PUBLIC HEALTH REPORTS

AGGLUTINATION, CROSS-AGGLUTINATION, AND AGGLUTININ ABSORPTION IN TULARAEMIA

By Edward Francis, Surgeon, and Alicb C. Evans, Associate Bacteriologist, Hygienic Laboratory, United States Public Health Service

Abbreviations:

To avoid the constant repetition of the technical names in their nomenclatorial forms, we adopt in this paper the following abbreviations:
tularense $=$ Bacterium tularense McCoy and Chapin, 1912.
melitensis = Brucella melitensis variety melitensis [A] (Bruce, 1893)
—Evans, 1923, Public Health Reports, Vol. 38, p. 1943.
abortus $=$ Brucella melitensis variety abortus (Bang, 1897)
-Evans, 1923, Public Health Reports, Vol. 38, p. 1943.
Only these two varieties of Brucella melitensis are considered in the present paper because they are the only varieties known to occur commonly in the United States.

The final diagnosis in tularæmia rests on the isolation of a culture of tularense or on agglutination of a stock culture of this organism by the patient's blood serum. The latter is a reliable test and has been employed in the Hygienic Laboratory of the United States Public Health Service at Washington, D. C., for several years as a routine test of suspected serums submitted for diagnosis.

Tularæmia serums have been received from 24 States, from the District of Columbia, and from Japan. A study of these serums has been supplemented by a study of the agglutinin reactions in experimental animals; the results are presented under the following heads:
A. Agglutination:
(1) Agglutination of tularense by human tularæmic serums.
(2) Nonagglutination of various organisms by human and animal tularæmic serums.
(3) Nonagglutination of tularense by nontularæmic human and animal serums.
(4) Nonagglutination of abortus and melitensis by human and animal serums.
B. Cross agglutination:
(1) Cross agglutination of abortus and melitensis by human and animal tularæmic serums.
(2) Cross agglutination of tularense by serums from cases of undulant fever and by serums of animals immunized against abortus and melitensis.
97387$-26-26$
(1273)

C. Agglutinin absorption:

(1) Agglutinin absorption reactions of human and animal tularæmic serums.
(2) Reciprocal agglutinin absorption reactions of four tularense strains.
(3) Reciprocal agglutinin absorption of tularense, abortus and melitensis.
Technique.
Summary.
Conclusions.

(1)

agglutination of tularense by human tularecmic serums
Table 1 presents agglutination titers of 120 cases of tularemia. In 28 of these cases the initials of the patient's name are given and tests of his serum taken at intervals are recorded, showing the rise and fall of agglutinin titer in the individual as time progressed; in 92 cases no initials are given and only a single sample of serum was tested for each case; hence no two records are for the same individual.

Analysis of Table 1 shows: A complete absence of agglutinins for tularense in the first week of tularæmia; the constant presence of agglutinins in the second week; an abrupt rise in titer in the third week, reaching its maximum in the fourth, fifth, sixth, or seventh week; a fall of titer in the eighth week; a gradual decline thereafter until at the end of the first year the average titer of 17 cases was 1:136; a persistence of agglutinins in long-recovered cases; and the failure of agglutinins entirely to disappear in any case even 10, 14, and 18 years after recovery.
Five market men who showed agglutinin titers of $80,80,40,40$, and 40, respectively, were not included in Table 1 because the date of onset of their illness could not be determined. These men had been engaged annually in the rabbit season in skinning and dressing rabbits, but were without knowledge of an attack which could be definitely ascribed to tularæmia. It is believed that the maintenance of their agglutinin titer was not due to annual exposure to infection but to a persistence of agglutinins from their first attack; for it has been observed that, in laboratory workers, the degree of persistence of agglutinins is no greater in those exposed daily to infection than in those who have not been exposed since their attack of tularæmia.
Table 1.-Agglutination titers of blood serums of 120 cases of tularemia

Cases	Week of illness								Months		Years after onset of illness											
	First	Second	Third	Fourth	Fitth	Sixth	Seventh	Eighth	3	6	1	2	3	4	5	6	10	14	18			
28 cases, tested 2 or more times each:		$\begin{array}{r} 9 \text { days; } 80 \\ 10 \text { days; } 10 \\ 11 \\ \text { days; } 160 \end{array}$	$\begin{array}{cc} 18 \text { days; } & 320 \\ \hdashline i 8 \text { days; } & 320 \end{array}$	$\begin{array}{lr} 23 \text { days; } & 320 \\ 22 \text { days; } & 180 \\ 25 & \text { days; } \\ \hline 280 \end{array}$	180	320			320	-...	--...			\cdots			
O. E W. V						--.....																
F. $\mathrm{S}^{\mathbf{M}}$					--...--																	
w. c .		$\left\lvert\, \begin{aligned} & 11 \text { days; } 180 \\ & \hdashline 12 \text { days; } \\ & 140 \\ & 14 \text { days: } 80 \\ & 14 \\ & \text { days; } 640 \end{aligned}\right.$	21 days; $1,28{ }^{2}$	--.-.-............																		
				20 days; 1,280				-..-.-		$\begin{array}{r} 320^{\circ} \\ -80^{\circ} \end{array}$	$\begin{aligned} & 160^{-} \\ & 160^{\circ} \end{aligned}$											
"'B';																						
H. C .	--..-.......					$\cdots 320$					---:											
C. Fim											\cdots											
A. M.			- 21 days; 640	$\left\lvert\, \begin{aligned} & 25 \text { days; } 1600 \\ & \hdashline 24 \text { days } 2,560 \end{aligned}\right.$	$1-280^{-}$				640										-			
				24 days; 2,560	$\begin{aligned} & 1,280 \\ & \cdots \end{aligned}$				160 320													
R. R W. P			$\begin{gathered} \text { i8 days } \\ 19 \text { days } \\ 320 \end{gathered}$	$\begin{aligned} & 23 \text { day; } 640 \\ & 26 \text { days; } 1,280 \end{aligned}$							- 40											
8. S. M				25 days; 1,280	i,000			$\begin{array}{\|c} \because-\cdots \\ \hdashline 640 \\ \hline \end{array}$				180 320 160		80								
J. W. N .						640			$\begin{gathered} \cdots \\ \hdashline i e \sigma \\ \hline \end{gathered}$	320							()					
G. w. L											160160320100		$\left.\begin{gathered} 160 \\ 180 \\ 40 \\ 40 \end{gathered} \right\rvert\,$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 40 \end{aligned}$								
E. E B. M												$\left.\begin{gathered} 1000 \\ 40 \end{gathered} \right\rvert\,$			$\begin{gathered} i 690 \\ i 00 \\ 200 \\ 20 \end{gathered}$	40						
E. W. ${ }^{\text {T }}$																						

Table 1.-Agglutination titers of blood serums of 120 cases of tularæmia-Continued

Cases	Week of illness								Months		Years after onset of illness									
	First	Second	Third	Fourth	Fitth	Sisth	Seventh	Eighth	3	6	1	2	3	4	5	6	10	14	18	
92 cases, tested only once each..		${ }_{12}^{12}$ days; 40		23 days; 640	80	160	40 80	320	$\begin{array}{\|l\|l\|} \hline 180 \\ 320 & 80 \\ 320 \\ 320 \\ 320 & 160 \\ 200 \end{array}$		$\begin{gathered} 20 \\ 20 \\ 20 \\ 40 \\ 40 \\ 80 \\ 180 \\ 160 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$				40		20	
		14 days; 20		${ }_{24}^{24}$ days; 320	320	${ }_{640}$	320	320												
		14 days; 640		${ }^{24}$ days ${ }^{25}$ day ${ }^{\text {dat }}$	640	640 640	- 328	${ }_{640}^{640}$	332											
				${ }_{25} 2$ days; 1,280	640	${ }_{640} 6$	${ }_{1}^{1}, 280$		320											
				${ }^{28}$ days: ${ }^{2}$ did ${ }^{640}$	1,280	1, 1,280	2, ${ }_{\text {2,560 }}$		320										
				27 days; 320	1,280				320	-		-								
		---		$\begin{array}{ll}278 \\ \\ 28 \\ \text { dayss; } \\ \text { days } & 320 \\ 320\end{array}$		2,560			640 640											
		--...																		
		.-.		-.............		-...								
		--											.							
	0	158	450	720	723	824	916	540	340	260	136	60	98	60	73	40	40	40	20	

(2) NONAGGLUTINATION OF various ORGANISMS BY HUMAN AND ANIMAL TULAREAMIC SERUMS

Human tularæmic serums of high titer have been tested for agglutination of the following organisms with negative results: B. typhosus, paratyphoid A, paratyphoid B, B. dysenterix, B. pestis, meningococcus, pneumococcus, and Proteus X_{10}.

The serum of a rabbit immunized against tularense strain 12, agglutinated tularense in all dilutions from 1:10 to 1:2,560, but failed to agglutinate B. typhosus or B. pestis in dilutions of from 1:10 to 1:320.

The serum of a rabbit immunized against tularense strain 38, agglutinated tularense in all dilutions from 1:10 to $1: 2,560$, but failed to agglutinate B. typhosus, paratyphoid A or paratyphoid B in dilutions of from $1: 10$ to $1: 160$.

The serums of five rabbits immunized against tularense strains $38,45,26,13$, and 12 , and having anti-tularense titers of $1,280,2,560$, $2,560,5,120$, and 5,120 , respectively, failed to agglutinate B. typhosus in dilutions from 1:10 to 1:160.
(3) nonagqlutination of tularense by nontularemic human AND ANIMAL SERUMS

Of 500 serums received for routine Wassermann examination and tested also for agglutination of tularense in dilutions of $1: 10,20$, and 40, 15 agglutinated in maximum dilution of $1: 10$, but were negative to the Wassermann test; 5 agglutinated in maximum dilution of 1:20, 2 of which gave a strong Wassermann; none agglutinated in dilution of $1: 40 ; 61$ serums positive to the Wassermann and 419 serums negative to the Wassermann failed to agglutinate in dilutions of $1: 10$ and higher.

The following human serums also failed to agglutinate tularense in dilutions of $1: 10$ and higher; 4 typhoid serums having titers of 40 , 80, 320, and 640, respectively, and 2 typhus serums having titers of 2,000 and 160, respectively, for Proteus X_{19}.

The serum of a rabbit immunized against B. typhosus agglutinated B. typhosus in all dilutions from $1: 10$ to $1: 5,120$, but failed to agglutinate tularense in dilutions from $1: 10$ to $1: 320$. Serums of 10 rabbits immunized by intravenous injection of commercial typhoid vaccines agglutinated B. typhosus up to $1: 1,600$, but failed to agglutinate tularense in dilutions from 1:10 to 1:160.
Serums of 11 rabbits immunized against washed red cells of a sheep while preparing hemolytic amboceptor failed to agglutinate tularense in dilutions of $1: 10,20$, and 40 .

Serums of 14 normal rabbits failed to agglutinate tularense in dilutions of $1: 10,20,40$, and 80.

Through the cooperation of Dr. William Charles White a tularense suspension was submitted to Dr. David Perla, of the Henry Phipps Institute, to whom we are indebted for making agglutination tests with the sera of 51 cases of pulmonary tuberculosis.

At the time when the agglutinations were made the tuberculocomplement fixation, the Wassermann, the Caulfield inhibitive test, and, in some cases, the agglutination test with tubercle bacilli were carried out.

The sera were tested in dilutions of $1: 5,10,20,40$, and 80 . Thirteen sera agglatinated tularense completely in dilution of $1: 5$, one agglutinated completely in dilution of $1: 10$; none agglutinated completely in dilution of $1: 20$ or higher. In a few instances a trace was recorded in dilutions as high as $1: 40$.

There seemed to be no relation between the agglutination with tubercle bacilli and that with tularense when tested with human tuberculous sera.

Dr. Stuart Mudd, of the Henry Phipps. Institute, very courteously tested for agglutination of tularense with antitubercle rabbit sera prepared by Dr. J. Furth, also of that institute, with the following results: (1) Of two rabbits immunized against two human strains, respectively, one agglutinated tularense partially in dilutions of $1: 10,20$, and 40 , while the other failed to agglutinate in all dilutions; (2) of two rabbits immunized against a bovine strain, one agglutinated tularense completely in dilution of $1: 10$ and partially in $1: 20$, while the other failed to agglutinate in all dilutions.

(4) nonagglutination of abortus and helitensis by human and antmal serumb

Of 100 human tularæmic serums tested for agglutination of tularense, abortus, and melitensis, 63 failed to agglutinate abortus or melitensis, although they agglutinated tularense (see Table 2). The 37 which agglutinated all three organisms are discussed under the next heading.

Of 500 human serums received for routine Wassermann examination and tested also for agglutination of melitensis by Evans, ${ }^{1} 11$ agglutinated in maximum dilution of $1: 10,2$ agglutinated in maximum dilution of $1: 20,2$ in maximum dilution of $1: 40$, and 1 in maximum dilution of $1: 320 ; 484$ failed to agglutinate in dilutions of $1: 10$ or higher.

Serums of the 14 normal rabbits which failed to agglutinate tularense, failed also to agglutinate abortus and melitensis in dilutions of $1: 10,20,40$, and 80.

Table 2.-One hundred human tularamia serums tested for cross agglutination of abortus and melitensis

Table 3.-Cross agglutination by human tularœmia serums from 37 cases

Case	Time after onset	Tula- rense	Abortus	Melitensis	Treatment of serum
R. R. S	18 days.	$\begin{array}{r} 640 \\ 1,280 \end{array}$	$\begin{array}{r} 40 \\ 1,280 \end{array}$	$\begin{gathered} 40 \\ 400 \end{gathered}$	Unheated, glycorin. Do
	26 days				
	7 months....	640 640	320 320	320 320	55°, no preservative.
	1 year..	320	320	320	550, trikresol.
	1 year 4 months.		3200	3200	Da
B. F. T-	3 days-......				Unheated, glycerin.
	9 days-		0	\bigcirc	
	16 days...	1,230 320	160 160	332	Unheater, paracresol.
	42 days	0	160	160	Unheated, trikresol.
E. W. M.	5 days				Unheated, glycerin. Da.
	11 days.	320	0	1100	
	${ }_{25}^{18 \text { days. }}$		$\begin{aligned} & 160 \\ & 320 \end{aligned}$		Do.
	711 days.	1,280	$\begin{array}{r} 320 \\ 80 \end{array}$	160	Unheated, paracresol. Unheated, trikresol.
	87 days.	320	88	80	Unheated, glycerin. Do.
J. W. G	40 days.	640		160	
A. M	53 dass.	${ }^{640}$	160		Unheated, trikresol. Unheated, no preservative.
A. M	11 24 days.	2, 560	160	-...	Do. 55°, no preservative.
	333 days	1,280	160 80	80	
	79 days.		80	40	
R. ${ }^{\text {P }}$	23 days.	1, ${ }^{640}$	8080	160 80	Do.
8.S. ${ }^{\text {M }}$	25 days.				
	46 days.	1,280	80		Unheated, gljcorin.
A. L.	45 days.	2,560	80	80	Do.
8. T. M	26 days.	$\begin{array}{r} 640 \\ 1,280 \end{array}$	80	160	Unheated, trikresol. Do.
J. W. M	21 days.	${ }^{640}$	80 80	160 80	Do.
D. B	10 days.		8080	8080	Unheated, glycerin. 5^{5} ', no preservative.
L. R. ${ }^{\text {d }}$	32 days.	1,280			
(Dr. F)	17 32 days.-	, 649	80	80	Do.
	21 days.	320	80 80	$\stackrel{40}{160}$	Unincated, trikresol.
	.do.		4040	20	Do.
R. McK	28 days	1,280			Unheated, glycerin.
A. ${ }_{\text {S }}$	14 days.	2,560		40	
	43 days.		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	40	Unheated. Phenol.
	24 days	1, 3280			
	31 days	320320	40	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
	27 days		4020		
C. W	19 days.	320		10	Unheated. Do.
J. B. K	56 days		20	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	
S. ${ }_{\text {E. }}$ C. \mathbf{W}	37 days.	320 640			Trikresol. Unheated.
F. B.	--.-do.	640	2020	10	Do.Do.
L. F	36 days.	1,280		20	
G. H	42 days	320320	20		Do.
J. B.	64 days 28 days		20		
${ }^{\text {J }}$. N	56 days	320 320	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		Do.
W.F.S	21 days.	320320	$\begin{aligned} & 10 \\ & 10 \end{aligned}$.-...	Unheated, glycerin. Do.
C. I.	36 days........				

(5) CROSs AGGLUtination of abortus and melitensis by human TULAREMIA SERUMS

Cross agglutination of abortus (the cause of contagious abortion of animals) and melitensis (the cause of undulant fever) was noted in dilution of $1: 10$ or higher in 37 of 100 cases of tularemia as set forth in Tables 2 and 3.

Analysis of these tables shows the following: No serum with a tularense titer less than 320 gave cross agglutination of abortus or melitensis; of serums showing anti-tularense titers of $320,640,1280$, and 2560, the number which gave cross agglutination of abortus and melitensis was 37 , while the number which gave no cross agglutination was 36 , thus showing a failure of high-titer serums consistently
TULARAEMIA, hUMAN(R.R.S.)AgGLUTINATION

CHAET 1.-Showing agglutination of tularense, abortus, and melitensis to the same, or nearly the same, degree by a human tularæmic serum
to show cross agglutination; as a rule, a tularæmia serum agglutinated tularense in much higher dilution than it agglutinated abortus or melitensis; exceptions to that rule were noted in the first three serums listed in Table 3, in which tests are seen where tularense serums agglutinated tularense, abortus, and melitensis to the same or nearly the same degree.

The significance of these observations, from the viewpoint of diagnosis, is that a suspected tularæmia serum should be tested, not only for agglutination of tularense but also for agglutination of either abortus or melitensis. It has been established by Evans ${ }^{1}$ that a serum which agglutinates one of the latter two organisms will also agglutinate the other.

[^0]If the tularense titer of a serum is much higher than the abortus or melitensis titers, no doubt is left as to the diagnosis of tularæmia; moreover, at the end of one hour's incubation, a tularæmia serum will have nearly reached its maximum tularense titer, while the abortus amd melitensis reactions will be just beginning.

Serums showing a very high degree of cross agglutination (see Chart 1) must be subjected to agglutinin absorption tests, by which it will be found that a tularæmia serum, after absorption by tularense, will no longer agglutinate tularense, melitensis, or abortus; but a tularemia serum, after absorption by either melitensis or abortus, will still agglutinate tularense to the full titer at which it agglutinated tularense before being absorbed.

Anti-tularense Rabbit 38: Agglutination

Cnart 2-Showing agglutination of tularense, abortus, and melitensis by the serum of a rabbit immunized against tularense
(6) CROSS AGGLUtination of abortus and melitensis by serums of RABBIT, SHEEP, HORSE, AND RỌOSTER AFTER TMMUNIZATION against tularense

Table 4 shows that there is the same agglutinin response in animals immunized in the laboratory against tularense that there is in man after acquiring the disease in nature.

Animals immunized against tularense developed agglutinins for tularense, abortus, and melitensis, but the degree of agglutination for tularense, was, as a rule, much higher than that for abortus or melitensis. In sheep 2, however, the titer for tularense and abortus reached the same height $(1: 320)$. Chart 2 shows that in rabbit 38
Table 4.-Cross agglutination of abortus and melitensis by antitularense serums of rabbit, sheep, horse, and rooster

Antitularense serums	Date injected	Date bled	Date tested	Agglutination titers			Treatment of serum
				Tularense	Abortus	Melitensis	
Rabbit 38, injected intravenously; strain 38..................................	Mar. 13, 1925	Mar. 27, 1925	Apr. 5, 1925	2, 660	320	320	55°, trikresol.
Rabbit 45-1, injected intravenously; strain 45.	Mar. 23, 1925 Mar. 13, 1925 Mar 20, 1925	Mar. 30, 1925	Apr. 5 , 1925	2, 560	180	160^{-}	Do.
	Mar. 20, 1925			1, 280			
Rabbit J-5, injected subcutaneously; strain J	Mar. ${ }^{\text {Feb }}$ 10, 1928	Feb. 27, 1928	Feb. 27,1928		--..--	320	
Rabbit 7, injected subcutaneously; strain M	June 26, 1923		Aag. 28,1924	640 320		160	
Sheep 2, injected subcutaneously; strain 13, 28, 38	July 25, 1922	Aug. 9, 1922		1, 320120	320		$\begin{aligned} & 55^{\circ} \text {, trikeresol. } \\ & \text { Do. } \end{aligned}$
Sheep 4, injected subcutaneously; strain V.......		Mar. 25,1924	Oct. ${ }^{28,1825}$		320	640	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \\ & \text { Do. } \end{aligned}$
Sheep 4, serum before injection	$\begin{aligned} & \text { Mar. 4, } 1924 \\ & \text { Mar. 11, } 1924 \end{aligned}$	Mar. ${ }^{\text {Mar. } 25,1924}$	Oct. ${ }^{\text {Oct. }} 28,1925$	320	80	80	
Horse 1, injected subcutaneously; strain V...............................--							
Horse 1, serum before injection. Horse 2, injected subcutaneously; strain $\mathbf{V}$$\qquad$		$\begin{aligned} & \text { Mar. } 41924 \\ & \text { Apr. } 25,1924 \end{aligned}$	Oct. 29,1925	$\begin{array}{r} 20 \\ 320 \end{array}$	$-\cdots-10$ 80 80	$\left\|\begin{array}{r} 80 \\ 160 \end{array}\right\|$	Do. Unheated, no preservative.
	Apr. 1,1924 Apr. 8,1924 Apr. 15,1924		Oct. 29, 1925				
Horse 2, serum before injection. Rooster L, injected intravenously; strain 26		$\begin{array}{ll} \text { Mar. } 25,1924 \\ \text { May } & 4,1925 \end{array}$	$\begin{aligned} & \text { Oct. } 29,1925 \\ & \text { July } \\ & 12,1925 \end{aligned}$	$\left\|\begin{array}{r} \cdots \\ 1,280 \end{array}\right\|$	20160	$\left\|\begin{array}{r} 20 \\ 320 \end{array}\right\|$	55°, trikresol. Unheated, no preservative.
	Apr. 23, 1925Apr. 24,1925Apr. 28, 1295Apr.Apr. 24,1925Apr. 26,1925Apr. 23,1925Apr. 24,1925Apr. 28,1925						
Rooster R, injected intravenously; strain 38..........		May 4,1925	May 30, 1925	-----970	-1.----70	${ }^{-\cdots-\cdots-7}$	Do.
Rooster M, injected intravenously; strain 13.		May 4, 1925	May 30, 1925	640	-1.-.- 80		Do.

Note.- Blood serum collected from rabbits 38 and 45-1 and from sheep 2 before immunization failed to agglutinate tularense, abortus, or melitensis in dilutions of $1: 10$, 20, and th.
Blood serium of rabbits 7 and J-5 was not tested for agglutinins before immunization. Blood serum of the roosters collected before immunization failed to agglutinate abortus and
melitensis in dilutions from $1: 10$ to $1: 320$.
the persistence of agglatinins was longer for tularense than for abortus or melitensis.

(7) cross-agglutination of tularense by serums from cases OF UNDULANT OR MALTA FEVER

Cross agglutination of tularense by serums from cases of undulant fever was noted in three of eight serums tested (see Table 5); but the degree of cross agglutination was so small as to leave no doubt as to the diagnosis. In the case of D. Z., when his melitensis titer was 2,560 his tularense titer was 80 ; but six months later, when his melitensis titer had fallen to 160 his tularense titer was zero. In the case of B. T. S., when his melitensis titer was 1,280 his tularense titer was 20; in the case of -W., when his melitensis titer was 640 , his tularense titer was 10.

Table 5.-Cross agglutination by serums of cases of undulant fever

Case	Time after onset	Tularense	Abortus	Meli-	Treatment of serum
D. Z	30 days---	80	2,560		Unheated, no preservative.
	7 months.	0	160	160	
B. T. S	8 days....	20	640	1,280	56° C. 1 hour. Unheated, no preservative.
D. ${ }_{\text {Di }} \mathbf{L} .1$	2 menths	0	640 160	640	Unheated, no preservative. No preservative.
- ${ }^{1}$.	Scveral weeks.	0	320	320	Do.
M. W.	19 weeks..	0	80	20	Do.
M. ${ }_{\text {W }} \mathbf{1}^{\mathbf{1}}$	About 2 months.....-	0	320 320	- 160	0.2\% trikresol.
	8 days after first test.	10	640		$\begin{aligned} & \text { preses } \\ & \text { Do. } \end{aligned}$

1 The method of carrying out the test of these serums differed somewhat from that generally used. The antigens were twice as dense, and incubation was at $56^{\circ} \mathrm{C}$. for four hours.

The serum from case D. C. F. is of special interest to the diagnostic laboratory in that the serum came to us with a request for an agglutination of tularense. The attending physician had suspected tularæmia because the patient had been dressing rabbits; but he had overlooked the occupation of his patient, which was that of butcher. Had we merely complied with the request and tested the serum against tularense we would have missed the diagnosis. We tested the serum, as is our routine procedure, against both tularense and abortus and found agglutinins for abortus but none for tularense, thus reaching the correct diagnosis in the case. ${ }^{1}$

(8) CROSS AGGLUTINATION OF tolarense by SERUMS OF RABBITS immunized against abortus and helitensis

Table 6 shows that rabbits immunized against abortus and melitensis developed agglutinins for tularense just as man and animals

[^1]immunized against tularense develop agglutinins for abortus and melitensis, but the agglutinin titer for abortus and melitensis was higher and persisted longer than for tularense (see Chart 3).
(9) agglutinin absorption of human tularemia serums

Table 7 presents the agglutinin absorption reactions of four tularæmia serums and shows that they reacted as follows:

Chart 3.-Showing agglutination of tularense, abortus, and melitensis by the serum of a rabbit immunized against abortus
(1) After absorption by tularense they lost all agglutinins for tularense, abortus, and melitensis; (2) after absorption by abortus, they retained all agglutinins for tularense, but lost all agglutinins for abortus and melitensis; (3) after absorption by melitensis they retained all agglutinins for tularense, lost all agglutinins for melitensis, and showed a reduction of agglutinins for abortus to at least 6 per cent.
Table 6.-Cross agglutination of tularense by serums of rabbits immunized against abortus and melitensis

Rabblt	Date injected	Date bled	Date tested	Agglutination titers			Treatment of serum
				$\begin{gathered} \text { Tular- } \\ \text { cnse } \end{gathered}$	$\begin{gathered} \text { Abortus, } \\ 426 \text {, } \end{gathered}$	Melitensis, 428	
426-4, injected intravenously with abortus, 426.		July 15, 1925 Aug. 12, 1825 Do. July 15, 1925	July 24, 1925 Aug. 16, 1825 Do. Aug. 9, 1825	320	2,560	1,280	$55^{\circ} \mathrm{C} .13 / 2$ hour, trikresol.
456-50, injected intravenously with abortus, 456...				160	1,250	1,280	$55^{\circ} \mathrm{C}$. trikrsosol.
456-63, injected intravenously with abortus, 456...				180	1,280	2,560	Do.
428-3 injected intravenously with melitensis, 428				80	2,560	2,560	Do.

Norz. - None of the above rabbits were tested for agglutinins before immunization. Serums 156-50 and 156-53 falled to agglutinate B. typhosus in dilutions of 1:10, 20,40 and 80 .
Table 7.-Agglutinin absorption reactions of four human antitularense serums

[^2]Table 8.-Agglutinin absorption reactions of antitularense serums of rabbit, sheep, and rooster

${ }^{1}$ Heated $55^{\circ}, 1 / 3$ hour preserved with trikresol; tested July 19, 1925.

(10) AGGLUTININ ABSORPTION OF ANTITULARAMIC SERUMS OF RABBIT, SHEEP, AND ROOSTER

Table 8 shows that antitularæmic serums of the rabbit, sheep, and rooster reacted as follows: (1) After absorption by tularense they lost all agglutinins for tularense, abortus, and melitensis; (2) after absorption by abortus they retained all agglutinins for tularense, but lost all agglutinins for abortus and melitensis, except that in case of the rooster some agglutinins for melitensis remained which probably would have been removed by reabsorption; (3) after absorption by melitensis they retained all agglutinins for tularense, lost all agglutinins for melitensis, and showed a reduction of agglutinins for abortus to 50 per cent in the rabbit, to 12.5 per cent in the sheep, and to at least 6 per cent in the rooster.
(11) RECIPROCAL AGGLUTININ ABSORPTION REACTIONS OF FOUR tularense cultures

Table 9 shows that three strains of American origin (V, M, and 38) were compared with each other by reciprocal agglutinin absorption and that no differences between them were found. In addition, strain M was similarly compared with strain J, which was of Japanese origin, and no difference between them was found.
(12) RECIPROCAL AGGLUTININ ABSORPTION REACTIONS OF TULARENSE, ABORTUS, AND MELITENSIS

Anti-tularense rabbit 38 was immunized against strain 38, antiabortus rabbit 426 was immunized against strain 426, and antimelitensis rabbit 428 was immunized against strain 428 . In carrying out the absorption tests, tularense strain V was substituted for tularense strain 38, no difference having been found between them by reciprocal agglutinin absorption tests (see Table 9).

Table 10 shows the following: (1) A tularense serum, after absorption by tularense, lost all agglutinins for tularense, abortus, and melitensis; after absorption by abortus, lost all agglutinins for abortus and melitensis but retained all agglutinins for tularense; after absorption by melitensis, lost all agglutinins for melitensis, retained all agglutinins for tularense, but shows a reduction to only 50 per cent of agglutinins for abortus, even after reabsorption by melitensis. (2) An abortus serum, after absorption by tularense, lost all agglutinins for tularense, but retained all agglutinins for abortus amd melitensis; after absorption by abortus, lost all agglutinins for tularense, abortus, and melitensis; after absorption by melitensis, lost all agglutinins for tularense and melitensis and showed a reduction to 12.5 per cent of agglutinins for abortus. (3) A melitensis serum, after absorption by tularense, lost all agglutinins for tularense but retained all agglu-
tinins for abortus and melitensis; after absorption by abortus, lost all agglutinins for tularense and abortus and showed a reduction to about 12.5 per cent of agglutinins for melitensis; after absorption by melitensis, lost all agglutinins for tularense, abortus, and melitensis.

TECHNIQUE

Sources of cultures.-Six tularense cultures isolated by Francis were employed. Five of these came from cases of tularæmia and one from a rabbit. Their histories are as follows: V came from the spleen of a woman who died in Washington, D. C., December 30, 1923; M from the liver of a rabbit obtained from the Washington, D. C., market in January, 1923; 38 from an inguinal gland of a girl seen in Utah in September, 1920; 26 from the blood of man seen in Utah in July, 1920; 13 from a cervical gland of a boy seen in Utah in July, 1920; and J from a human gland received January 5, 1926, from Dr. H. Ohara, Fukushima City, Fukushima, Japan.

Abortus 426 is without definite history other than that Dr. K. F. Meyer obtained it from the Royal Army Medical Corps, London, England. It is not certain whether it was isolated in Austria.

Melitensis 428 was obtained from Dr. K. F. Meyer, who, in turn, received it from Dr. E. Sergent, Institut Pasteur d'Algérie, Tunis. It is not certain whether it was isolated in Tunisia.

Antiserums.-The human tularæmia serums studied were recieved at the Hygienic Laboratory, United States Public Health Service, Washington, D. C., for routine testing for the diagnosis of tularæmia.

The rabbit, sheep, and horse are available for the production of antitularæmic serums. The rabbit is the animal of choice on account of the well-established absence of agglutinins in its normal serum. If a sheep is to be used, its serum should be tested for agglutinins before immunization. The horse is the least desirable on account of the presence of agglutinins in the normal blood. Data relative to the preparation of the various antiserums used in this work will be found in the tables.

The human serums were usually tested without preliminary heating to 55°, although throughout the tables numerous instances are noted where the serums were heated.

Heating the serums was regarded as immaterial, it having been noted that heat did not reduce the titer of the specific agglutinins or of the cross agglutinins.

Preservation of the serum with trikresol or by the addition of an equal amount of pare, undiluted, neutral glycerine was without effect on the the agglutinins. The clouding effect of too large an amount of trikresol was avoided by adding not more than 0.1 per cent. Glycerin has the advantage of clearing the serum.
Table 9.-Reciprocal agglutinin absorption reactions of four tularense strains $V, M, 38$, and J

Table 10.-Reciprocal agglutinin absorption reactions of tularense, abortus, and melitensis

${ }^{1}$ Heated $55^{\circ} \mathrm{C} .1 / 2$ hour and preserved with trikresol; tested July 19, 1925. ${ }^{2}{ }^{2}$ Heated $55^{\circ} \mathrm{C} .1 / 2$ hour and preserved with trikresol; tested July 28, 1825.

Antigens.--Tularense, abortus, and melitensis cultures were grown on the same medium-glucose cystine agar-in Blake bottles; at the end of 72 hours the growth was washed off in normal saline solution by rocking the bottle in the hands; the suspension was thrown down in the centrifuge, and the sediment was taken up in normal saline solution to which formalin was added in the proportion of 0.1 per cent for tularense and 0.2 per cent for abortus and melitensis, although in a few instances living abortus and melitensis antigens were used as noted in the tables. In no instance was an antigen killed by heat.

Turbidity standard.-The density of antigens is expressed in terms of the turbidity standard described in the Standard Methods of Water Analysis, published by the American Public Health Association. This standard is described on page 4 of the editions of 1917, 1920, 1923, and 1925.
"For preparation of the Standard, dry Pears' precipitated fuller's earth and sift it through a 200 -mesh sieve. One gram of this preparation in 1 liter of distilled water makes a stock suspension which should have a turbidity of 1,000 .
"Standards for comparison shall be prepared from this stock suspension by dilution with distilled water."

A silica standard having a turbidity of 500 , sealed in a glass ampule 10 millimeters in diameter and of 2 c. c. capacity, has been found satisfactory in determining the turbidity of bacterial suspensions. This turbidity was chosen because ordinary type is just legible through this standard. The sample in question is tested in a tube of the same size. Comparison is made by viewing ordinary type through standard and sample.

For example, if 0.1 c. c. of a bacterial suspension requires dilution with 1.9 c. c. of water before its turbidity, when compared in a 10 -millimeter tube, becomes the same as the 500 silica standard, then the turbidity of the heavy suspension is considered to be 10,000 ; if 2.7 c . c. saline solution were required, the turbidity would be 14,000 ; if 8.8 c . c. of saline solution were required, the turbidity would be 44,500 , etc.

For the agglutinin absorption tests it is desirable to have the turbidity of the stock antigens adjusted to some convenient number, such as $10,000,20,000,30,000$, or 40,000 ; for example, to adjust a turbidity of 13,500 to 10,000 , one would add 3.5 c . c. of saline solution to 10 c . c. of the antigen; to adjust a turbidity of 44,500 to 20,000 , one would add 24.5 c . c . of saline solution to $20 \mathrm{c} . \mathrm{c}$. of the antigen, or 12.25 c . c. of saline solution to 10 c . c. of the antigen, etc. It is immaterial at what turbidity the stock antigens are kept, so long as the turbidity is known.

For making agglutination tests, the stack antigens were diluted with normal saline solution to a turbidity of 500 and then added in
0.5 c. c. amount to each agglutination tube containing 0.5 c. c. of diluted serum so that agglutination took place in a turbidity of antigen of 250 .

Serum dilutions.-The following scheme was followed:
(1) 0.5 c. c. of serum +2.0 c. c. saline $=1: 5$ 0.5 c. c. of $(1) \quad+0.5$ c. c. antigen $=1: 10$.
(2) 1 c. c. of (1) $\quad+1$ c. c. of saline $=1: 10$
0.5 c. c. of $(2) \quad+0.5$ c. c. antigen $=1: 20$, etc.

Incubation.-Agglutination tests, except as noted in Table 5, were carried out in the water bath at $37^{\circ} \mathrm{C}$. for two and one-half hours, after which the tubes were placed overnight in the cold room at a temperature of about $10^{\circ} \mathrm{C}$. and readings were recorded the next morning.

Reading the results.-A reading of 4 denotes complete sedimentation and a water-clear supernatant fluid; 3 denotes a supernatant turbidity equal to that in a control tube containing 25 per cent as much antigen as in the tubes in which the test was carried out; 2 denotes a supernatant turbidity equal to that in a control tube containing 50 per cent of the antigen; 1 denotes a supernatant turbidity equal to that in a control tube containing 75 per cent of the antigen.

Absorption.-The minimal absorbing dose of an antigen for its homologous antiserum must be sufficient to reduce the agglutinin content to 3 per cent or less. The absorbing dose is determined by a series of titrations and was found to vary enormously between tularense on the one hand and abortus and melitensis on the other. The removal of agglutinins for abortus and melitensis required 4 to 6 times as much antigen as for the removal of agglutinins for tularense.

Measurement of the absorbing dose was based on turbidity comparison. The necessary amount of stock antigen was placed in a centrifuge tube and thrown down in a centrifuge running at high speed for $11 / 4$ hours; the supernatant fluid was poured off and the packed bacteria were thoroughly mixed with a-1:5 dilution in saline of the serum to be absorbed. The centrifuge tubes were not calibrated nor was any correction made for saline remaining in the packed bacteria mass, as the error from that source was considered to be not only very small but constant for all tests.

The time of absorption was 9 hours in the water bath at $37^{\circ} \mathrm{C}$., followed by 12 hours in the cold room at $10^{\circ} \mathrm{C}$. The tube containing the absorbed serum was then placed in a centrifuge running at high speed for $11 / 4$ hours and the cleared serum was removed with a pipette. It was considered important that throughout the time of absorption and time in the centrifuge the centrifuge tube be covered with a rubber dam to prevent evaporation.

During absorption in the water bath the mixtures were agitated several times.

Reabsorption was carried out by the same procedure as outlined for absorption.

SUMMARY

A study of the blood serums of 120 cases of tularæmia tested for agglutination of Bacterium tularense shows (1) a complete absence of agglutinins for tularense in the first week of illness; (2) the constant presence of agglutinins in the second week; (3) an abrupt rise in titer in the third week, reaching its maximum in the fourth, fifth, sixth, or seventh week; (4) a fall in titer in the eighth week; (5) a gradual decline thereafter until at the end of the first year the average titer of 17 cases was $1: 136$; (6) a persistence of agglutinins in longrecovered cases; and (7) the failure of agglutinins entirely to disappear in any case, even 10, 14, and 18 years after recovery.

Human and animal tularense serums of high titer failed to agglutinate B. typhosus, B. pestis, paratyphoid A, paratyphoid B, B. dysenteriae, meningococcus, pneumococcus, and Proteus \mathbf{X}_{19}. Bacterium tularense was not agglutinated by 480 of 500 serums received at the Hygienic Laboratory for Wassermann test, nor by normal rabbit serums, nor by serums from cases of typhoid fever, typhus fever, and syphilis, nor by the serums of rabbits immunized against B. typhosus.

Cross agglutination of abortus and melitensis by human and animal tularense serums was noted as follows: (1) Of 100 serums from human cases of tularæmia, 37 showed cross agglutination which, in three instances, reached the same titer for the three organisms, while the remaining 63 serums, some of which were of high anti-tularense titer, failed to show any cross agglutination; (2) antitularense serums of rabbit, sheep, horse, and rooster showed cross agglutination which, in one instance (sheep), reached the same titer for abortus and tularense, but, as a rule, the cross agglutination titers were not only much lower than the tularense titers but were slower in developing in the water bath.

Cross agglutination of tularense was noted (1) by three of eight serums from cases of undulant fever, but the degree of cross agglutination was small; (2) by three serums of rabbits immunized against abortus and by the serum of a rabbit immunized against melitensis.

Agglutinin. absorption tests with serums from four cases of tularæmia and serums of three anti-tularense animals (rabbit, sheep, and rooster) resulted as follows: (1) After absorption by tularense, they failed to agglutinate tularense, abortus, and melitensis; (2) after absorption by abortus they failed to agglutinate abortus and melitensis, but agglutinated tularense to the original tularense titer of the unabsorbed serum; (3) after absorption by melitensis they failed to agglutinate melitensis, agglutinated tularense to the titer of the
unabsorbed serum, and varied in their behavior toward abortus as follows: Onc human case and one rooster failed to agglutinate abortus; in the rabbit the titer for abortus was reduced to only 50 per cent; in the sheep the titer for abortus was reduced to 12.5 per cent; and in one human serum the titer for abortus was reduced to 6 per cent.

Reciprocal agglutinin absorption tests carried out with three strains of tularense isolated in the United States and one strain isolated from human virulent tissue received from Japan showed no difference between the strains.

Reciprocal agglutinin absorption tests carried out with a culture of tularense, a culture of abortus, a culture of melitensis, and their antiserums prepared from rabbits resulted as follows: (1) Tularense was readily differentiated from abortus and from melitensis: (2) abortus was readily differentiated from melitensis; and (3) an unexpected development was that the tularense serum differentiated abortus and melitensis, reacting as an abortus serum. The same tendency to react as an abortus serum was noted in the absorption reactions of one human tularense serum.

CONCLUSIONS

The conclusions reached are-(1) That, on account of the frequent cross agglutination between tularense, on the one hand, and abortus and melitensis, on the other, serums from suspected cases of tularæmia and undulant fever should be tested for agglutination of tularense and either abortus or melitensis, unless the clinical history points definitely to a recognized source of infection for tularæmia or undulant fever.
(2) That a serum which shows a marked difference in titer for tularense, on the one hand, and for abortus or melitensis, on the other, can usually be classed by the higher titer as due either to tularæmia or to one of the varieties of Brucella melitensis.
(3) That a serum which agglutinates all three organisms to the same or nearly the same titer should be subjected to agglutinin absorption tests.

CURRENT WORLD PREVALENCE OF DISEASE

REVIEW OF THE MONTHLY EPIDEMIOLOGICAL REPORT ISSUED APRIL 15, 1926, BY THE HEALTH SECTION OF THE LEAGUE OF NATIONS' SECRETARIAT ${ }^{1}$

An outbreak of influenza occurred in England and Wales toward the end of March; it reached its maximum in the second week of April and rapidly diminished in the succeeding two weeks. This is the second outbreak to occur in England during the past winter, the former outbreak having occurred in December. The Epidemiological

[^3]Report notes that "the interval between the outbreak which took place at the beginning of December and the present one has been of 16 weeks, which is exactly the interval between maxima of the epidemics of July, 1908, November, 1918, and March, 1919." During the recent outbreak the general mortality in 105 towns in England and Wales rose from 12.8 per 1,000 in the week ended March 20, to 15.0 in the week ended April 10, and the deaths from influenza increased from 136 in the week ended March 20, to 302 in the week ended April 17. The increase in mortality was not so sharp as that which accompanied the December outbreak, when the death rate in the towns rose to 17.9 per 1,000 .

Glasgow, Scotland, suffered severely from an influenza outbreak at the time when England was affected, and the general mortality rate rose to the high point of 30 per 1,000 in the week ended April 3, considerably higher than for any week during the December outbreak. Edinburgh gave no indication of any unusual prevalence of influenza in March or April, although it is less than 50 miles from Glasgow.

General mortality and deaths from influenza in 105 towns in England and Wales, in London, and in Glasgow

Week ended-	Deaths in 105 towns		Deaths in London		Deaths in Clasgow	
	$\begin{gathered} \text { All } \\ \text { causes, } \\ \text { rate per } \\ 1,000 \end{gathered}$	Number from infuenza	All rate per 1,000	$\begin{aligned} & \text { Number } \\ & \text { finfluenza } \\ & \text { infor } \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { causes, } \\ & \text { rate per } \\ & 1,000 \end{aligned}$	Number from influonza
March 20	12.8	136	13.1		18.1	
27	13.9	136	13.9	27	23.7	24
April 3--	15.0	223	15.2	48	31.0	67
10	15.1	294	15.3	74	25.6	81
24	13.2	209	128	35	17.9	20
May 1.	12.6	166	126	28	16.7	13

The reports available from the large continental European towns for March and the early part of April did not indicate any general increase in influenza coincident with that in England.

Influenza deaths and the general mortality declined during April in the United States. The peak of the influenza outbreak was reached in the week ended March 27, when the death rate from all causes for 68 large cities was 19.4 per 1,000 , after which a continuous decline in mortality was reported. The death rate for the 68 cities had dropped to 14.4 per 1,000 during the week ended May 1.

Plague.-The number of plague deaths in India during February was nearly double that reported for the previous four weeks. About 60 per cent occurred in the eastern section of the Punjab and in the United Provinces, "where the season of maximum incidence is April and March, respectively." The total deaths numbered slightly more than in February, 1925. "The rainfall, which had been deficient
during the previous months throughout Northern India," says the Report, "exceeded the normal in the United Provinces and the Eastern Punjab during February and the beginning of March. High atmospheric humidity at this season of the year in these areas is favorable to the extension of plague."

Deaths from plague in the Provinces of India

Province	1926		1925
	Jan. 3-30	$\begin{aligned} & \text { Jan. 31- } \\ & \text { Feb. } 27 \end{aligned}$	Feb. 1-28
North-West Frontier.	0	1	16
Punjab..	1,805	5,217	3,644
Delhi		3	5 28
United Provinces.	2,754	4,752	5,468
Bihar and Orissa	2, 597	967	1,218
Bengal.	0	0	0
Assam	0	0	0
Central Provinces.	481	998	1,071
Madras Presidency.	341	346	407
Hyderabad State...	348	738	603
Mysore.-........	437	462	71
Bombay Presidency.	751	1,080	853
Burma--..-.-.-.-.	575	, 708	470
Other Indian States	608	1,683	669
Total.	8,682	16,955	14,518

Java reported 1,094 plague deaths during February, which was approximately 400 fewer than in the preceding four weeks. "A continued decline may be expected up to June, which is, as a rule, the month of minimum incidence," states the report.

Plague was less prevalent in Siam and in French Indo-China during the first quarter of the year than in the corresponding season of 1925, only a few cases having been reported in each country.

Plague reappeared in Iraq in December, and during the first 10 weeks of the current year there were 78 cases and 48 deaths reported at Bagdad.

During March, Egypt reported 8 cases of plague, one at Alexandria, one at Suez, one in Minia Province, and 5 in Gharbia Province. These are the first cases reported in Egypt this year.

Four cases of plague were reported in Greece during March, one at Zante, one at Chios, and two at Heraclion.
Russia reported 28 plague deaths in the Uralsk-Boukeiev Government in the period from February 16 to March 16.

The Epidemiological Report makes the following comment concerning plague in Africa:

Madagascar, Kenya, and Uganda have recently been the most important plague centers in East Africa. Mauritius and the Tanganyika Territory have been free from plague for several months. There were 186 plague cases reported in Madagascar during March, against a maximum of 400 cases in December; June is usually the month of lowest incidence in that island. In Kenya and

Uganda the seasonal fluctuations are more irregular, but there is, nevertheless, a definite tendency toward a seasonal maximum between June and Septc, nber. There were 97 plague cases reported in Kenya during February, as against 49 in the preceding month and 23 during the corresponding month of 1925. In Uganda there were 109 plague cases in January, as against 29 during the corresponding month of the preceding year.

Human plague cases were again reported during March in the Union of South Africa, but the outbreak was confined to a small area in the Orange Free State.

Ecuador reported 16 plague cases at Guayaquil during February, compared with 34 in January.

Cholera.-Cholera cases increased markedly during March in Siam and in French Indo-Cbina. The number of cases in Siam rose from 285 in the two weeks ended February 27 to 838 in the two weeks ended March 13. In French Indo-China an epidemic started in January in Cambodia, and during February 958 cases were reported. The disease spread rapidly and in March 1,666 cases were reported, with Cochin-China also heavily infected.
In India, 6,532 deaths from cholera were reported in February, approximately the same number as in the preceding four weeks. No extension of the infected area took place, but the number of cases in Bengal and the neighboring districts of Bihar increased, while the outbreak in the southern part of Madras Presidency began to decline.

Cholera cases in the principal ports of the Far East from March 14 to April 24, 1926

City	Week ended-					
	Mar. 20	Mar. 27	Apr. 3	Apr. 10	Apr. 17	Apr. 24
Calcutta (deaths)	45	48	30		46	
Madras (deaths)	4	9	4		0	0
Rangoon (deaths)	2	1	2	4	6	4
Bangkok.---.-...	84	90	91	102	92	107
Saigon and Cholon.	0	2	13	21	46	23
Singapore........-	0	0	0	0	1	0

Typhus and relapsing fever.-Russia generally reported a lower incidence of both typhus and relapsing fever during the fourth quarter of 1925 than during the corresponding quarter of 1924. The figures for each geographical area are shown in the accompanying table.

The following data on typhus and relapsing fever in the remainder of Europe are given in the Report:

In Poland there were 540 typhus cases during the four weeks ended March 20, as against 500 during the preceding four weeks and 739 during the corresponding period of 1925. Practically all the cases occurred in the eastern provinces. No case of relapsing fever was reported during the period under review; 324 typhus cases were reported during January in Rumania; there were 231 cases during the corresponding month of the previous year. Small typhus outbreaks occurred in Bulgaria and in the Kingdom of the Serbs, Croats, and Slovenes. Only 5 cases of relapsing fever have been reported during the first quarter of the current year in the whole of Europe outside Russia.

Cases of typhus and relapsing fever reported in Russia during the fourth quarter of 1924 and 1925

| Geographical area | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| | |

${ }^{1}$ Incomplete data
In the first quarter of 1926 Tunisia reported 180 cases of typhus fever, Algeria 89 cases, and the French Protectorate of Morocco 270 cases.

Smallpox.-A severe epidemic of smallpox occurred in India, in the Province of Orissa, at the beginning of the current year. In two districts, Puri and Cuttack, there were 15,752 cases and 3,088 deaths from smallpox reported during the first eight weeks of the year. In southern India, on the contrary, smallpox was less prevalent than during the early months of 1925.

The incidence of smallpox in England and Wales has been declining since February. During the four weeks ended April 10 there were 687 cases reported, compared with 945 in the preceding four weeks.

Typhoid fever and dysentery.-"Following the very low incidence of typhoid fever which prevailed throughout Europe at the end of 1925 and the beginning of 1926, a slight increase occurred in certain countries of western and central Europe during February and March," states the Report.

Cases of typhoid fever reported in various countries during the first quarter of 1926

Four weeks ended-	$\begin{gathered} \text { England } \\ \text { and } \\ \text { Wales } \end{gathered}$	Germany	Netherlands	Belgium ${ }^{1}$
Jan. 30	138	360		
Feb. 27	159	426	95	73
Mar. 27.	179	381	71	

${ }^{1}$ Monthly data.

"A similar increase of dysentery cases took place during February in Germany and Poland. The incidence of both diseases continued to diminish as usual during the winter months in Eastern, Southern, and the remainder of Central Europe."

In Japan there were 9,953 typhoid fever cases reported during the first 10 weeks of the year, as compared with 6,808 cases in the corresponding period of 1925. In March the incidence was returning to a normal level.

Lethargic encephalitis.-The incidence of lethargic encephalitis shows no marked change during the first quarter in any of the countries which report on this disease. The number of cases reported during the first quarter of 1926 are compared with the cases in the corresponding period of 1925 in the following table:

Cases of lethargic encephalitis notified in various countries, January-March, 1925 and 1926

Anthrax.-The following data on the prevalence of anthrax is taken from the Report:

Anthrax cases and deaths reported in various countries during 1924 and 1925

Anthrax cases and deaths reported in various countries during 1984 and
$1925-C o n t i n u e d$

Country	$\begin{gathered} \text { Total } \\ 1924 \end{gathered}$	1925				
		Total	First	Second quarter	Third quarter	Fourth quarter
EUROPE-continued						
	14	5	0	1	3	1
Poland... ${ }^{\text {c }}$	69	74	14	16	38	6
Russia:	17	11.	2	3	3	3
European Russia.............................-. \mathbf{C}	8,178	7,077	1,173	1. 432	3,601	871
	5,392	5,041	- 864	845	2,172	1,169
	396	872	95	107	316	354
	535	175	52	24	86	13
	23	11	2	4	5	0
	617	585	38	14	533	
Waterways, railways, and prisons	174	86	14	18	27	27
Total Russia	15,320	13,847	2,238	2,444	6,740	2,425
		488	57	$\begin{array}{r}2198 \\ \hline 11\end{array}$	4200	2, 142
Singdom of the Serbs, Croats, and Slovenes.- $\left\{\begin{array}{l}\text { D } \\ \mathbf{D}\end{array}\right.$	-	70	10	11	29	20
		6	0	3	3	0
	67 7	47	8	11	22 0	- 6

Tuberculosis.-Some interesting data on the decline in tuberculosis mortality during 1925 in many of the large cities of Europe and other parts of the world are presented in the April number of Epidemiological Report, from which the figures in the table below have been taken. The decrease in deaths from tuberculosis as compared with 1924 has been greatest in the cities in Eastern and Central Europe. A few European cities and a number of those outside Europe showed no improvement over 1924 or even a higher death rate.

Mortality from tuberculosis (all forms) in various cities in 1925 and the per cent increase or decrease over 1924

Mortality from tuberculosis (all forms) in various citics in 1925 and the per cent increase or decrease over 1924-Continued

${ }^{1}$ Data for eleven months. ${ }_{9}^{2}$ Pulmonary tuberculosis only. ${ }^{-}$Data for 10 months.

4 Data for 51 weeks.

- Data for 49 weeks.

SMALLPOX AND VACCINATION IN LOS ANGELES, CALIF.

Dr. George Parrish, health commissioner of Los Angeles, Calif., has compiled the following data regarding 1,220 cases of smallpox which occurred in Los Angeles from July 1, 1925, to May 1, 1926.
Number vaccinated in childhood or infancy ${ }^{1}$ 122
Number vaccinated too long ago to be immune ${ }^{2}$ 33
Number vaccinated after exposure (too late) 113
Number never successfully vaccinated 952
Total number of cases reported 1, 220

[^4]
The vaccination histories of the patients who died were as follows:

Never vaccinated 144
Vaccinated after exposure 5
Vaccinated more than 20 years before onset of disease 15
Total 164

During the epidemic three cases presented fairly good evidence that they had previously had smallpox-one 33 years before onset of the disease, one 30 years, and one 13 years before.

PATIENTS IN HOSPITALS FOR FEEBLE-MINDED

Reports have been received by the Public Health Service from 20 institutions for the care of feeble-minded persons, located in 13 States. The data given below are for the month of March, 1926. The number of patients in these institutions on March 1, was 13,013, including those on temporary leave; on March 31, there were 13,060 patients, a gain of 0.36 per cent. The increase in the number of patients on temporary leave (35) equals three-fourths of the increase in the number of patients (47). The average number of patients on temporary leave was 632, or 4.8 per cent of the total. Forty-eight. and one-tenth per cent of the patients were males and 51.9 per cent were females; 17 patients were discharged during the month and 30 died; 9 patients were reported as transferred to institutions not included in the table.
Patients on books 1st day of month:
In institution 12, 398
On temporary leave 615
Total 13, 013
Admitted during month:
First admissions 97
Readmissions 6
Total received during month 103
Total in institution during month 13, 116
Discharged or placed on indefinite parole during month 17
Transferred to other institutions 9
Died during month 30
Total discharged, transferred, and died 56
Patients on books last day of month:
In institutions 12, 410
On temporary leave 650
Total 13, 060
Males 6, 283
Females 6, 777

DEATHS DURING WEEK ENDED JUNE 12, 1926

Summary of information received by telegraph from industrial insurance companies for week ended June 12, 1926, and corresponding week of 1925. (From the Weekly Health Index, June 17, 1926, issued by the Bureau of the Census, Department of Commerce)

Deaths from all causes in certain large cities of the United States during the week ended June 12, 1926, infant mortality, annual death rate, and comparison with corresponding week of 1925. (From the Weekly Health Index, June 17, 1926, issued by the Bureau of the Census, Department of Commerce)

[^5]Deaths from all causes in certain large cities of the United States during the week ended June 12, 1926, infant moriality, annual death rate, and comparison with corresponding week of 1925. (From the Weekly Health Index, June 17, 1926, issued by the Bureau of the Census, Department of Commerce)-Continued

For fontnotes 4 and 5, see p. 1304

PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without
knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary and the figures are subject to change when later returns are received by the state health officers

Reports for Week Ended June 19, 1926

Report for week ended June 12, 1926

NORTH DAKOTA-continued
Cases

Tuberctitwis 1
Whooping cough..-- .-..................................... 28

Pneumenia

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of monthly State reports is published weekly and covers only those States from which reports are received during the current week:

State	Cere-brospinal $\underset{\text { gitis }}{\text { menin }}$	Diphtheria	Influenza	Malaria	$\begin{gathered} \text { Mea- } \\ \text { Bles } \end{gathered}$	Pellagra	Polio-myelitis	Scarlet	$\begin{gathered} \text { Small- } \\ \text { pox } \end{gathered}$	Typhoid. fever
May, 1926										
Arkansas.	0	7	153	123	268			92		
District of Columbia	2	71	3		1,604	0	0	132	3	5
Louisiana-	10	37	${ }^{86}$	55	17	51	0	81	78	54
New Jel sey-.......--	10	328 28	34		6, 981		1	828 258	31	21
Tennessce...	10	60	516	44	3,154	136	0	170	147	51
Wisconsin.-.......	3	126	424	0	5,021	0	0	459	15	14

RODENT PLAGUE IN SAN BENITO COUNTY, CALIF.

A report dated June 5, 1926, states that 5 squirrels out of a total of 27 shipped from San Benito County, Calif., to the Public Health Service laboratory at San Francisco, have proved positive for bubonic plague.

SMALLPOX IN CALIFORNIA, JANUARY TO APRIL, 1926

The Weekly Bulletin of the California State Board of Health dated May 15, 1926, gives the following summary of cases of smallpox and deaths from this disease during the four months ended April 30, 1926. The total number of cases of smallpox was 2,182; deaths, 208. Of these, 1,249 cases and 186 deaths occurred in Los Angeles County. Only 10 counties reported deaths from smallpox during the four months, and 5 of these had only one death each.

County	January		February		March		April	
	Cases	Deaths	Cases	Deaths	Cases	Deaths	Cases	Deaths
Sants Clara.	3	-7	6		5	--.-.-.-	10	---*
Ganta Crue.					1			
Siskifou. -					2	--..---		-
Solano....	5		1					---
Sonoma -	1	-	3		51	-...-.-.	7	---------*
Stanislaus			1	--	9		5	--......
Sutter....-				-			1	------.---
Tulare	1				2	---1--1	2	
Ventura.	2		8		1	, 1	2	
Yodo	1		6		6			-
Yuba.	2							\cdots
Californis.			8		2			
Total.	448	31	657	78	746	54	337	45

SMALLPOX IN FLORIDA, DECEMBER, 1925, TO MAY, 1926

The bureau of vital statistics of the State Board of Health of Florida has supplied the following data relative to cases of smallpox reported in the State of Florida during the six months ended May 31, 1926 :

Location	Dee.	Jan.	Feb.	Mar.	A Pr	May	Total
St3te.	65	322	558	782	407	269	2,403
Alachua County.		2	4	6	2	25	39
Bravard County.		10	1	4		1	16
Citrus County.-			1			1	2
Clay County			10	2	4	1	17
Dade County, exclusive of Miami		2	6	7	9		24
Miami.....---......-------	25	82	136	185	25	6	459
Duval County, exclusive of Jackso			7	14	7		28
Jocksonville............	13	35	104	132	106	104	494
Escambia County	1	4	2		1	3	11
Franklin County.						1	1
Glades County				2		2	4
Highlands County	3		3			5	11
Hilisboro County, exclusive of Tam		10		12	27	2	51
Tampa.	13	122	120	112	68	31	466
Lake County.					1	1	2
Lee County ---				2		2	4
Madison County				1			1
Marion Oounty.		5		6	1	2	14
Orlanda....-.			36		1	1	38
Palm Beach County, exclusive of W		3	4	4	2		13
West Palm Beach			60	113	37	12	282
Pasco County.		5	1	15	3	2	96
8t. Petarshurg			6	35	28	22	81
Polk County, exclusive of Lakeland			2	29	6	4	41
Iakeland .-..........			1	11	2	4	18
St. Johns County	1		3	23		7	34
St. Lucie County.		3	4	22		12	11
Sarasota County.-		1	1			4	6
Seminole County.		1		9	6	8	24
Volusia County.		1		1	15	1	18
Washington County.					1	3	4

PLAGUE ERADICATIVE MEASURES IN LOS ANGELES, CALIF.

The following items were taken from the report of plague eradicative measures from Los Angeles, Calif.:

Week ended June 12, 1926:

Number of rats found to be plague infected... θ
Number of squirrels examined.-.-... 747

Number of mice found to be plague infected.................................... 0
Date of discovery of last plague-infected rodent, Nov. 6, 1925.
Date of last human case, Jan. 15, 1925.

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

Diphtheria.-For the week ended June 5, 1926, 35 States reported 932 cases of diphtheria. For the week ended June 6, 1925, the same States reported 1,345 cases of this disease. Ninety-seven cities, situated in all parts of the country and having an aggregate population of more than $30,120,000$, reported 684 cases of diphtheria for the week ended June 5, 1926. Last year for the corresponding week they reported 870 cases. The estimated expectancy for these cities was 833 cases. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Measles.-Thirty-three States reported 13,263 cases of measles for the week ended June 5, 1926, and 6,165 cases of this disease for the week ended June 6, 1925. Ninety-seven cities reported 5,783 cases of measles for the week this year and 3,398 cases last year.

Poliomyelitis.-The health officers of 36 States reported 14 cases of poliomyelitis for the week ended June 5, 1926. The same States reported 38 cases for the week ended June 6, 1925.

Scarlet fever.-Scarlet fever was reported for the week as follows: Thirty-five Statos-this year, 2,589 cases; last year, 2,845 cases; 97 cities-this year, 1,321 cases; last year, 1,462 cases; estimated expectancy, 885 cases.

Smallpox.-For the week ended June 5, 1926, 36 States reported 547 cases of smallpox. Last year for the corresponding week they reported 821 cases. Ninety-seven cities reported smallpox for the week as follows: 1926, 88 cases; 1925, 256 cases; estimated expectancy, 125 cases.

Typhoid fever. -Two hundred and forty-two cases of typhoid fever were reported for the week ended June 5, 1926, by 35 States. For the corresponding week of 1925 , the same States reported 566 cases of this disease. Ninety-seven cities reported 54 cases of typhoid fever for the week this year and 137 cases for the corresponding week last year. The estimated expectancy for these cities was 71 cases.

Influenza and pneumonia.-Deaths from influenza and pneumonia were reported for the week by 91 cities, with a population of more than 29,400,000, as follows: 1926, 646 deaths; 1925, 744.

City reports for week ended June 5, 1926

The "estimated expectancy" given for diphtheria, poliomyelitis, scarlet fever, smallpox, and typhoid fever is the result of an attempt to ascertain from provious occurrence how many cases of the disease under consideration may be expected to occur during a certain week in the absence of epidemics. It is based on reports to the Public Health Ser vice during the past nine years. It is in most instances the median number of cases reported in the corresponding week of the preceding years. When the reports include several epidemics or when for other reasons the median is unsatisfactory. the epidemic periods are excluded and the estimated expectancy is the mean number of cases reported for the week during nonepidemic years.
If reports have not been received for the full nine years, data are used for as many years as possible, but no year earlier than 1917 is included. In obtaining the estimated expectancy the figures are smoothed when necessary to avoid abrupt deviations from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

Division, State, and city	Population July 1, 1925, estimated	Chicken pox, cases reported	Diphtheria		Influenza		Measles, cases reported	Mumps. cases reported	Pneumonia, deaths reported
			Cases, estimated expectancy	Cases reported	$\begin{gathered} \text { Cases } \\ \text { re-- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Deaths } \\ \text { re- } \\ \text { ported } \end{gathered}$			
NEW ENGLAND									
Maine:									
Portland.	75,333	1	1	0	0	0	95	1	5
New Hampshire:									
Concord.-.-.---...-	22,546	0	0	0	0	0	0	0	0
Manchester	83, 097	0	1	0	0	0	18	0	0
Vermont: Barre	10,008	0	0	0	0	0	0	1	0
Massachusetts:									
Boston.-.-.	779, 620	25	50	13	3	1	96	41	15
Fall River	128, 993	0	3	1	0	0	2	2	2
Springfield	142,065	0	2	2	0	0	6	1	1
Worcester --	190, 757	2	4	8	0	0	4	0	5
Rhode Island:				0	0	0	10	1	1
Providence.	267,918	0	7	7	0	0	46	0	9
Connecticut:									
Bridgeport.-.-.-.	${ }^{(1)}$	7	5	2	0	0	3	0	2
Hartford.-	160, 197	4	5	0	1	0	7	0	6
New Haven.	178, 927	8	3	0	1	0	39	1	3
middle atlantic									
New York:									
Buffalo.	538, 016	8	10	0	0	0	23	1	17
New York.	5, 873, 356	168	256	176	34	6	484	74	155
Rochester.	316, 786	10	6	6	0	0	48	1	5
Syracuse...-.......---	182, 003	12	6	2	0	0	366	9	4
New Jersey:									
Canden.	128,642	3	3	7	0	0	19	0	6
Newark.	452,513	51	13	5	2	0	89	8	7
Trenton...-....-...-. -	132, 020	1	3	1	0	0	43	0	4
Pennsylvania:									
Philadelphia......-	1,979, 364	66	62	61	-	6	216	9	41
Pittsburgh.........-	631, 563	25	18	11	-	1	185	3	21
Reading---.-.-.-.---	112,707	2	3	1		0	35	0.	2
EAST NORTH CENTRAL									
Ohio: \quad -									
Cincinnati..--.-..--	409, 333	11	7	8	0	0	179	9	12
Cleveland. .-. --...---	936, 485	47	18	30	0	0	37	6	11
Columbus...........	279, 836	13	2	5	0	1	65	0	7
Toledo-...............-	287, 380	27	5	3	0	0	299	0	6
Indiana:									
Fort Wayne.	97, 846	3	2	2			74 27	0	13
Indianapolis......-.-	358,819 80	4	4	1	0	0	27 52	1	13
South Bend........--	80, 71071	1	1	0	0	0	52	0	5
Terre Haute.......-.	71071	0	1	0	0	0	10	0	1

${ }^{1}$ No estimate made.

City reports for week onded June 5, 1928-Continued

Division, State, and city	Population July 1, 1025, estimated	Chicken pox, cases reported	Diphtheria		Influenza		Measles, cases ported	Mamps, cases ported	Pneumonith reported					
			Cases, estimated expectancy	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	Deaths repot ted								
east noeth centralcontinued														
Peoria ${ }^{\text {Springielda-- }}$	63, 893	${ }_{3}^{2}$	$\stackrel{1}{0}$	0	0	0	120	${ }_{4}^{2}$						
Michigan:														
Detroit-...-........-	1, 245, 824	56	37	40	2	7	53	7	31					
Flint	130,316 153,698	16 5	3	2 2	0	0	131 63	1	5 2					
Kendison.	46,385	7	0	0	0	0	46	1	0					
Milwaukeo..	509, 192	90	12	13	2	3	293	50	ii					
Racine...	67, 707	3	0	2	0	0	279	4	6					
Superior---	39,671	0	0	1	0	0	16	0	2					
west north central														
Minnosota: 110.502														
Duluth......	110,502	7	1	0	0	0	13	0	2					
Minnespolis.......--	425, 435.	35 24	14	25 4	0	1	$\begin{array}{r}72 \\ 364 \\ \hline\end{array}$	1	1					
Iowa:														
Davenport	52,469	0	1	2	0		2	0						
Des Moines.-	141,441	0	1	2	0		0	0	---					
Siour City .-...----	73,411	1	0	0	0		$\begin{array}{r}0 \\ 54 \\ \hline\end{array}$	0						
Wissouri:	36,771	2	0	0	0		54	1	--...-					
Kansas City.......-	367, 481	12	5	1			29		9					
St. Joseph........--	78,342	3	1	0	0	0	6	9	0					
St. Louis..----------	821, 513	12	39	72	1	1	497							
	26, 403	2	0	0	0	0	0	2	0					
South Dakota:														
Lincoln.	60, 941	- 3	1	0	0		c	0	0					
Kansas:							56							
							11	0						
Wichita............-	88,367	0	1	1	0	0	4	0	1					
souti atlantic														
Delaware: ${ }_{\text {Wilmington }} 120,049$														
Cumberland.-.	33, 741	\%	0	0	0	0	7	0	1					
Fredrick --...-.---	12,035	0		0	0	0	1	3	0					
District of Columbia:	497,906	27	8	6	0	0	191	0	9					
Virginia:														
Lynclaburg	(1), 395	4	0	0	0	0	29	0	0					
Richmond.	186, 403	0	0	1	0	0	101	2						
Roanoke.	58, 208	0		0		0	23	1	0					
Charleston Wheding \qquad	49, 019 56,208	10	0	0	0	0	35	0						
North Carolina: ${ }^{\text {a }}$ - 0														
Raleigh	30,371	2	0	2	0	0	1	0	0					
Wilmington--.-----	37, 061		0											
Charleston.........-	73, 125	2		0										
Columbia-----.---	41, 2.25	5	0	0	0	0	0	0	0					
Greanville-.-	27,311	0	0	0	0	0		1	0					

[^6]City reports for week ended June 5, 1926-Continued

Division, State, and city	$\begin{aligned} & \text { Population } \\ & \text { July 1, } \\ & \text { 1925, } \\ & \text { estimated } \end{aligned}$	Chicken pox, cases reported	Diphtheria		Influenzs		Measles, cases reported	Mumps, cases reported	Pneumonia, deaths reported
			Cases, estimated expectancy	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Deaths } \\ \text { re- } \\ \text { ported } \end{gathered}$			
sOUTH ATLANTICcontinued									
Georgia:									
Atlanta...-	16, 809	10	1	2	4	0	36 6	0	2
Savannah.	93, 134	0	0	0	1	1	0	1	0
Florids: Miami	69,754	1		4	0	0	5	2	,
St. Petersburg.	26,847		0		0	0		2	1
Tampa........	94, 743	1	0	0	0	0	0	1	2
EASt SOUTH CENTRAL									
Kentucky:									
Covington..-.-....-	58,309	0	1	0	0	0	11	0	0
Louisville.........-.	305, 935	2	3	0	0	2	21	0	13
Tennessee: Memphis	174, 533		1		0	0	139		
Nashville...-	136, 220	4	0	0	0	2	10	0	2 3
Alabama:									
Birmingham....----	205, 670	14	0	2	1	3	127	6	6
Mobile	65,955	1	0	0	0	0	1	0	0
Montgomery	46, 481	0	0	0	0	0	11	2	0
West south central									
Arkansas:									
Fort Smith.....--.-	31,643	4	0	0	0		1	1	
Little Rock	74, 216	4	0	0	0	0	6	0	2
Louisiana:									
Texas:									
Dallas.	194, 450	37	2	1	0	0	4	0	
Galveston..........--	48,375	0	1	0	0	0	0	0	1
Houston.-.-.-.-.----	164,954	0	2	2	0	1	0	1	3
San Antonio.......--	198,069	0	0	1	0	0	4	0	6
MOUNTAIN									
Montana:									
Billings............--	17,971	2	0	0	0	0	7	0	1
Great Falls......-. --	29,883	1	0	0	0	1	53	0	0
Helena	12, 037	0	0	0	0	0	0	0	1
Missoula...........--	12, 668	2	0	1	0	0	1	0	0
Idaho:									
Boise........-.-.....--	23,042	0	0	0	0	0	3	0	0
Denver--..-.-.-.----	280, 911	32	10	5		1	23	1	7
Pueblo...-.-.....----	43, 787	6	1	0	0	0	39	0	1
New Mexico:									
Arizona:	21,000	0	1	4	0	0	2	2	2
A Phoenix....-.-....--	38, 669	0		0	0	0	0	0	0
Utah:				-		0			
Salt Lake City -----	130,948	--	3	6	0	0	11	---	6
Nevada: Reno	12, 665	0	0	0	0	0	0	0	0
PACIFIC									
Washington:									
Seattle..--...-.-.-.--	${ }^{(1)}$	25	4	8	0	--	32	33	
Spokane............--	108, 897	13	2	1	0	--	18	0	
Tacoma...........--	104, 455	1	1	4	0	0 .	2	1	3
Oregon:						c			
California:	282, 383	13	0	7	3	C	49	3	6
Los Angeles . .-. .-. -		18	34	21	9	0	2	4	8
Sacramento......---	72,260	5	2	4	0	0	0	8	8
San Francisco.....--	557, 530	23	18	11	1	1	204	16	0

[^7]City roports for week onded June 5, 1926mContinued

[^8]City repoits for the week ended June 5, 1926-Continued

Division, State, and city	Scarlet fever		Smallpox			Tuber culosis, deaths reported	Typhoid fever			Whooping cough, cases reported	$\begin{aligned} & \text { Deaths, } \\ & \text { all } \\ & \text { causes } \end{aligned}$			
	Cases, estimated expectancy	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	Cases, estimated expectancy	$\left.\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \text { Deaths } \\ \text { re- } \\ \text { ported } \end{array}\right\|$		$\left\lvert\, \begin{gathered} \text { Cases, } \\ \text { esti- } \\ \text { mated } \\ \text { expect- } \\ \text { ancy } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Cases } \\ \text { re- } \\ \text { ported } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Deaths } \\ \text { re- } \\ \text { ported } \end{gathered}\right.$					
WEST NORTH CEN-real-contd.														
Iowa:														
Davenport.-.-	1	0	4	1			0	0		0				
Des Moines. --	5	4	3	1			0	0		0				
Sioux City ---	2	9	1	8		-	0	0		3				
Waterloo.....-	2	0	0	0			0	0		6	--------			
Missouri: Kansas City														
Kansas City	6 1	11	3 0	0	0	0	0	0 1	0 0	8	94 31			
8t. Louis......-	25	58	3	1	0	7	2	3	0	34	184			
North Dakota: Fargo	0	2	0	1	0	0	0	0	0	4	6			
Grand Forks--	0		0		0	0	0	0	0					
South Dakota:														
Aberdeen.....-	1	8	0	0			0	0		34				
8ioux Falls...-	1	1	1	0	0	0	0	0	0	0	5			
Nebraska:														
Lincoln.------	1	2	0	0	0	2	0	0	0	15	10			
Omaha.......--	4	35	5	10	0	4	0	0	1	3	48			
Kansas: Topeka														
Wichita...........	$\begin{aligned} & \mathbf{1} \\ & \mathbf{2} \end{aligned}$	2	1	0	0	0	0	0	0	15	11 25			
SOUTH ATLANTIC														
Delaware:														
Cumberland.--	1	0	0	0	0	0	0	0	0	0	5			
Frederick...-- 0 0 0 0 0 0 0 0 0 2 District of Col.:														
Virginia:														
Norfolk	1	15	1	1	0	4	0	0	0	13	12			
Richmond.-.--	2	9	0	1	0	5	1	0	0	0	57			
Roanoke....---	1	0	1	5	0	3	0	0	0	1	14			
Huntington.---	0	0	0	0	0	--	0	0	0	16				
Wheeling.-..--	2	1	1	0	0	3	0	0	0	0	14			
Raleigh	0	0	0	1	0	1	0	0	0	6	10			
Wilmington.-.	0		0				0							
Winston-Salem	0	0	2	0	0	0	1	1	0	9	1			
South Carolina:														
Columbia...--	0	0	0	0	0	0	1	3	0	0				
Atlanta	- ${ }^{4}$	0	6	0	0	4	- $\begin{array}{r}1 \\ 0\end{array}$	8	3	0	70 5			
Savannah.-.---	0	0	1	0	0	2	1	0	0	0	33			
Miami...-.-.--		0		1	0	0		4	0	18	44			
St. Petersburg-	0		0		0	2	0		0		18			
Tampa.......--	0	0	0	9	0	4	0	1	0	0	36			
EAST SOUTH														
Kentucky:														
Covington....-	1	7	0	0	0	3	0	0	0	0	10			
Louisville....-	4	5	1	1	0	6	1	0	1	3	91			
Tennessee:														
Nashville.....--	2	2	1	0	0	2	1	0	0	5	40			
Alabama:														
Birmingham - -	1	2	6	8	0	4	2	1	1	19	86			
Mobile.-.-.-.--	0	0	1	0	0	2	1	1	0	0	22			
Montgomery.--	0	0	0	4	0	0	0	0	0	0	24			

City reports for rocek ended June 5, 1926-Continued

City reports for week ended June 5, 1926—Continued

[^9]The following table gives the rates per 100,000 population for 103 cities for the five-week period ended June 5, 1926, compared with those for a like period ended June 6, 1925. The population figures used in computing the rates are approximate estimates as of July 1,

1925 and 1926, respectively, authoritative figures for many of the cities not being available. The 103 cities reporting cases had an estimated aggregate population of nearly $30,000,000$ in 1925 and nearly $30,500,000$ in 1926. The 96 cities reporting deaths had more than $29,250,000$ estimated population in 1925 and more than 29,750,000 in 1926. The number of cities included in each group and the estimated aggregate populations are shown in a separate table below.
Summary of weekly reports from cities, May 2 to June 5, 1926-Annual rates per 100,000 population-Compared with rates for the corresponding period of 1925^{1}

DIPHTHERIA CASE RATES

	Week ended									
	$\begin{gathered} \text { May } \\ 9, \\ 1925 \end{gathered}$	$\begin{gathered} \text { May } \\ 8, \\ 1926 \end{gathered}$	$\begin{gathered} \text { May } \\ 16, \\ 1925 \end{gathered}$	May 15 1926	$\begin{gathered} \text { May } \\ 23, \\ 1925 \end{gathered}$	$\begin{gathered} \text { May } \\ 22, \\ 1926 \end{gathered}$	$\begin{gathered} \text { May } \\ 30, \\ 1925 \end{gathered}$	May 29, 1926	$\begin{gathered} \text { June } \\ 6, \\ 1925 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 5 \\ & 1926 \end{aligned}$
103 cities	${ }^{2} 152$	${ }^{3} 115$	${ }^{4} 158$	${ }^{8} 121$	148	${ }^{3} 117$	${ }^{5} 144$	${ }^{3} 122$	${ }^{6} 152$	7118
New England.	105	106	149	87	122	78	110	80	125	${ }^{8} 79$
Middle Atlantic.	211	125	237	135	202	138	210	145	243	134
East North Central	106	89	${ }^{\bullet} 102$	96	101	117	100	108	92	${ }^{10} 120$
West North Central	269	${ }^{3} 195$	205	${ }^{3} 199$	243	${ }^{3} 145$	187	${ }^{3} 163$	183	${ }^{3} 207$
South Atlantic...-.	98	75	81	77	83	71	${ }^{5} 72$	96	${ }^{6} 88$	1151
East South Central.	11	62	32	52	37	36	11	42	11	${ }^{12} 17$
West South Central.	62	60	53	82	40	47	62	65	40	56
Mountain.	102	146	148	182	129	127	139	127	74	109
Pacific.	${ }^{2} 117$	178	${ }^{13} 132$	175	157	164	160	159	138	132

measles case rates

SCARLET FEVER CASE RATES

103 cities	2311	${ }^{3} 294$	${ }^{4} 338$	${ }^{3} 326$	297	${ }^{3} 309$	${ }^{5} 267$	${ }^{3} 274$	${ }^{6} 256$	${ }^{7} 229$
New England	400	222	345	312	338	288	204	258	256	${ }^{8} 251$
Middle Atlantic	318	217	330.	249	264	256	270	212	262	209
East North Central	341	310	${ }^{-} 368$	356	388	341	321	339	293	${ }^{10} 246$
West North Central	599	${ }^{3} 933$	705	${ }^{3} 870$	539	3721	514	${ }^{3} 695$	466	3416
South Atlantic.	100	177	156	222	138	195	${ }^{5} 115$	160	${ }^{6} 125$	${ }^{11} 175$
East South Central	242	187	299	202	226	176	168	171	116	1294
West South Cen	84	176	70	155	44	172	62	116	84	163
Mountain	268	137	342	246	314	173	398	100	324	218
Pacific.	${ }^{2} 144$	208	${ }^{13} 187$	259	155	294	133	181	144	170

[^10]$$
97387^{\circ}-26-4
$$

Summary of weekly reports from cities, May 2 to June 5, 1926-Annual rates per 100,000 population-Compared with rates for the corresponding period of 1925-Continued

SMALLPOX CASE RATES

	Week ended									
	$\begin{gathered} \text { May } \\ 9,2 \\ 1925 \end{gathered}$	$\begin{gathered} \text { May } \\ 8,28 \\ 1928 \end{gathered}$	$\begin{gathered} \text { May } \\ 16,5 \end{gathered}$	$\begin{gathered} \text { May } \\ 15,{ }_{2} \end{gathered}$	$\begin{gathered} \text { May } \\ 23, \\ 1925 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 22, \\ & 1926 \end{aligned}$	$\begin{gathered} \text { May } \\ 30,5 \\ 1925 \end{gathered}$	$\begin{gathered} \text { May } \\ 29, \\ 1926 \end{gathered}$	$\begin{gathered} \text { June } \\ \mathbf{6}, \\ \mathbf{1 9 2 5} \end{gathered}$	$\begin{gathered} \text { June } \\ 5, \\ \mathbf{5} 926 \end{gathered}$
103 cities.	245	${ }^{2} 26$	44	${ }^{36}$	58	${ }^{3} 18$	- 547	${ }^{3} 19$	- 45	${ }^{15}$
New England.					0		0	0	0	0
Middle Atlantic.		0	7	0	2	0	2	1	4	0
East North Central.	41	22	$\bigcirc 53$	20	66	18	54	13	61	109
West North Central	58	${ }^{3} 58$	76	${ }^{3} 36$	66	${ }^{3} 28$	68	${ }^{3} 44$	92	${ }^{2} 40$
South Atlantic.-.-	42	30	35	39	61	24	${ }^{5} 10$	28	637	1134
East South Central.	347	73	173	119	404	62	389	62	105	${ }^{12} 88$
West South Central.	${ }^{26}$	159	35	116	123	95	53	${ }_{98}^{98}$	31	$\stackrel{43}{2}$
Mountain............	- 46	$\stackrel{36}{ }$	${ }_{13}{ }^{28}$	55	28	${ }_{51}^{18}$	55	${ }_{32}^{36}$	- 37	27
Pacific...	${ }^{2} 167$	57	${ }^{13} 181$	67	177	51	160	32	182	24

TYPHOID FEVER CASE RATES

103 cities.	${ }^{2} 13$	${ }^{8} 8$	413	28	18	${ }^{2} 11$	${ }^{5} 15$	${ }^{3} 10$	624	79
New England.	5	9	12	0	24	9	17	7	29	${ }^{8} 0$
Middle Atlantic.	13	7	10	10	19	7	9	5	28	9
East North Central	8	4	$\bullet 6$	5	5	5	7	9	9	105
West North Central	2	${ }^{3} 6$	0	32	4	38	10	24	8	38
South Atlantic.	27	13	25	4	36	32	539	26	639	${ }^{11} 34$
East South Central	42	16	58	0	68	10	47	31	37	1211
West South Central	44	17	75	43	62	26	62	13	84	9
Mountain.	0	0	0	9	18	9	9	0	74	9
Pacific.	29	11	${ }^{13} 3$	8	6	19	8	11	8	8

INFLUENZA DEATH RATES

96 cities.	14	25	${ }^{18} 14$	16	14	15	312	12	${ }^{6} 10$	${ }^{48}$
New England	10	14	7	5	5	12	7	9	2	82
Middle Atlantic	10	22	12	17	11	16	9	11	11	6
East North Central	15	29	10	18	11	18	13	11	10	108
West North Central	11	13	11	6	17	8	17	13	4	8
South Atlantic.	19	19	10	17	6	11	${ }^{12}$	11	${ }^{6} 6$	${ }^{118}$
East South Central	47	99	74	31	79	36	37	26	47	${ }^{12} 39$
West South Central	15	47	19	28	19	24	29	9	5	14
Mountain.	18	18	55	18	18	0	0	9	28	18
Pacific..-	15	4	${ }^{13} 12$	4	22	4	7	11	11	4

PNEUMONIA DEATH RATES

${ }^{2}$ Spokane, Wash., not included.

${ }_{3}$ Grand Forks, N. Dak., not included.
${ }^{3}$ Superior, Wis., and Tacoma, Wash., not included.
Charleston, W. Va., not included.
${ }^{6}$ Wilmington, N . C., not included.
Concord, N. H., not included.
${ }^{10}$ Madison, Wis., not included.
${ }^{11}$ Norfolk, Va., and Wilmington, N. C., not included.
${ }^{12}$ Covington, Ky., not included.
${ }^{13}$ Tacoma, Wash., not included. Concord, N. Madison, Wis., Norfolk, Va., Wilmington, N. C., and Covington, Ky., not included.
${ }_{15}^{14}$ Concord, N. H., Madison, Wis., Norfolk, Va., Wilmington, N. C., and Covington, Ky., not included. Ky., not included.
is Norfolk, Va., Charleston, W. Va., and Wilmington, N. C., not included.

Number of cities included in summary of weekly reports, and aggregate population of cities in each group, approximated as of July 1, 1925 and 1926, respectively

Group of cities	Number of cities reporting cases	Number of cities reporting deaths	Aggregate population of cities reporting cases		Aggregate population of cities reporting deaths	
			1925	1926	1925	1926
Total	103	96	29, 944, 996	30, 473, 129	29, 251, 658	29, 764, 201
New England.	12	12	2, 176, 124	2, 206, 124	2,176, 124	2, 206, 124
Middle Atlantic	10	10	10, 345, 970	10, 476, 970	10, 346, 970	10, 476, 970
East North Central	16	16	7, 481, 656	7, 655, 436	7, 481, 656	7, 655, 436
West North Central	14	11	2, 594, 962	2, 634, 662	2, 461, 380	2, 499, 036
South Atlantic.	21	21	2, 716, 070	2, 776, 070	2, 716, 070	2, 776, 070
East South Central	7	7	993, 103	1,004, 953	993, 103	1,004,953
West South Central	8	6	1, 184, 057	1,212, 057	1,078, 193	1, 103, 695
Mountain.	9	9	563, 912	572, 773	563, 912	572, 773
Pacific.	6	4	1, 888, 142	1,934, 084	1,434, 245	1, 469, 144

FOREIGN AND INSULAR

THE FAR EAST

Report for week ended May 29，1926．－The following report for the week ended May 29，1926，was transmitted by the far eastern bureau of the health section of the League of Nations＇secretariat，located at Singapore，to the headquarters at Geneva：

Maritime towns	Plague		Cholera		Small－		Maritime towns	Plague		Cholera		$\underset{\text { pox }}{\text { Small- }}$	
	$\begin{aligned} & \text { ⿷匚山己心 } \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Ø్ర } \\ & \text { OW } \end{aligned}$						号			$\begin{aligned} & \ddot{(} \\ & \text { Ü } \end{aligned}$	gis ¢ ¢
Egypt：Suez	3	0	0	0	0	0	Hongkong．．．	0	0	0	0	1	0
Iraq：Basrah．－－－－－－－－－	0	0	0	0	4	3	China：${ }_{\text {Shanghai }}$		0		0		
Bombay．．		2	－	0	26	1	Amoy	13	0	0	0	1	0
Madras．		0	．－．	0	2	1	Sarawak：Kuching	0	0		0	1	0
Karachi．		1		0	3	3	Japan：Osaka．．．．－	0	0	0	0	3	0
Negapatam		0		0	1	1	Kwangtung：						
Siam：Bangkok	1	1	219	118	7	3	Dairen－	0	0	0	0	4	0
French Indo－China：							Port Arthur	0	0	0	0	1	0
Haiphong－－．．－．－．－－	0	0	27	20	0	0							

Telegraphic reports from the following maritime towns indicated that no case of plague，cholera，or smallpox was reported during the week：

ASIA

British India．－Chittagong，Cochin，Tuticorin．
Ceylon．－Colombo．
Federated Malay States．－Port Swettenham．
Straits Settlements．－Penang，Singapore．
Dutch East Indies．－Batavia，Surabaya，Samarang，Cheribon，Belawan Deli， Palembang，Sabang，Makassar，Menado，Banjermasin，Balik－Papan，Tarakan， Pontianak，Padang．

British North Borneo．－Sandakan．
Portuguese Timor．－Dilly．
Philippine Islands．－Manila，Iloilo，Jolo，Cebu，Zamboanga．
French Indo－China．－Turane．
Formosa．－Keelung．
Japan．－Nagasaki，Yokohama，Shimonoseki，Moji，Kobe，Niigata，Tsuruga， Hakodate．

Korea．－Chemulpo，Fusan．
Manchuria．－Antung，Mukden，Changchun，Harbin．
U．S．S．R．－Viadivostok．

aUgTralasia and oceania

Australia.-Adelaide, Melbourne, Sydney, Brisbane, Rockhampton, Townsville, Port Darwin, Broome, Fremantle, Carnarvon, Thursday Island.

New Guinea.-Port Moresby.
New Zealand.-Auckland, Wellington, Christchurch, Invercargill, Dunedin.
New Caledonia.-Noumea.
Hawaii.-Honolulu.
AFRICA
Egypt.-Alexandria, Port Said.
Anglo-Egyptian Sudan.-Port Sudan.
Eritrea.-Massaua.
French Somaliland.-Jibuti.
British Somaliland.-Berbera.
Italian Somaliland.-Mogadiscio.
Kenya.-Mombasa.
Tanganyika.-Dar-es-Salaam.
Seychelles.-Victoria.
Mauritius.-Port Louis.
Portuguese East Africa.-Mozambique, Beira.
Union of South Africa.-Durban, East London, Port Elizabeth, Cape Town.
Reports had not been received in time for distribution from:
British India.-Rangoon, Calcutta, Vizagapatam.
Madagascar.-Tamatave, Majunga.
Portuguese East Africa.-Lourenco Marques.
Zanzibar.-Zanzibar.

BRAZIL

Yellow fever-Parahyba-Natal.-An outbreak of yellow fever in Parahyba and Naial, Brazil, late in March was reported to be checked May 17, 1926. Thirty cases and several deaths were reported in Parahyba, and a smaller number in Natal.

CANADA

Communicable diseases - May 9-29, 1926.-The Canadian Ministry of Health reports certain communicable diseases in seven Provinces of Canada for the period May 9 to May 29, 1926, as follows:

Disease	Nova Scotia	New $\begin{gathered}\text { Bruns- } \\ \text { wick }\end{gathered}$	Quebec	Ontario	Manitoba	Saskat chewan	Alberta	Total
Cerebrospinal meningit			2					2
Infuenza----	224	1						225
Poliomyelitis.			1	1				2
Smallpox-----			27	25	8	5		38
Typhoid fever.			27	24	4	9	6	70

CZECHOSLOVAKIA

Communicable diseases-January-March, 1926.-During the three months ended March 31, 1926, communicable diseases were reported in Czechoslovakia as follows:

Disease	Cases	Deaths	Provinces showing greatest number of cases and deaths
Anthrax.	6	2	Russinia: Cases, 3. Slovakia, deaths, 2.
Cerebrospinal meningiti	74	19	Bohemia: Cases 31; deaths, 11.
Diphtheria.	1,383	114	Bohemia: Cases, 715; deaths, 60.
Dysentery.	57	1	Slovakia: Cases, 20. Bohemia, 1 death.
Malaria --	3		Slovakia.
Paratyphoid fever B	12	1	Bohemia.
Puerperal infection	128	38	Bohemis: Cases, 65; deaths, 25.
Scarlet fever.	3,787	77	Bohemia: Cases, 2,108; deaths, 35.
Smallpox.	1	1	Blovakia.
Trachoma..	830		Moravia: Cases, 322.
Typhoid fever	1, 198	118	Slovakia: Cases, 491; deaths, 25.
Typhus fever.	111	1	Russinia: Cases, 111; deaths, 1.

EGYPT
Plague-May 7-19, 1926-Summary.-During the week ended May 13, 1926, 11 cases of plague, of which one case occurred at Alexandria, were reported in Egypt, making a total of 32 cases reported from January 1 to May 13, 1926, as compared with 40 cases reported during the corresponding period of the preceding year.

Later occurrence.-Later occurrence of plague in Egypt has been reported as follows: Suez-May 16, 1 case with 1 death (bubonic); province of Beni-Suef, May 16-20, 5 cases with 4 deaths (bubonic and septicemic); Province of Minia, May 17, 1 case (bubonic).

ESTHONIA

Communicable diseases-March-April, 1926.-Cases of communicable diseases have been reported in the Republic of Esthonia, for the months of March and April, 1926, as follows:

	Disease	,	$\underset{1926}{\text { March, }}$	$\underset{1926}{\text { April, }}$
Cerebrospinal			1	
Diphtheria			47	37
Leprosy			4	1
Measles.			82	586
Scarlet fever			288	157
Tuberculosis.			197	143
Typhoid fever			28	14
Typhus fever.			5	4

INDIA

Epidemic plague-Punjab.-Under date of May 8, 1926, epidemic plague was declared present in the Punjab, India, with cases in nearly every district of the Province. The greatest prevalence was reported in the eastern districts. During the second week in April, 1926, 7,336 cases with 5,379 deaths were reported.

JAMAICA

Smallpox (alastrim)-April 25-May 29, 1926.-During the five weeks ended May 29, 1926, 102 cases of smallpox (alastrim) were reported in the island of Jamaica, exclusive of Kingston. No cases were reported in Kingston.

Prevalence of other diseases.-During the period under report other diseases were reported in the island, exclusive of Kingston, as follows: Chicken pox, 42 cases; tuberculosis (pulmonary), 59 cases; typhoid fever, 37 cases. At Kingston the occurrence of the diseases named was reported as follows: Chicken pox, 3 cases; tuberculosis (pulmonary), 13 cases; typhoid fever, 10 cases. Population of island, estimated, 858,118 ; population of Kingston, census of 1921, 62,707.

MEXICO

Anthrax-Vera Cruz.-During the week ended June 6, 1926, a fatal case of anthrax was reported at Vera Cruz, Mexico.

PANAMA CANAL

Communicable diseases-April, 1926.-During the month of April, 1926, communicable diseases were reported in the Canal Zone, and at Colon and Panama, as follows:

Disease	Canal Zone		Colon		Panama		Infected in other localities		Total	
	Cases	Deaths								
Chicken pox.	2	1 1 1	13413			1	638	2	6810	------1 1 2
Diphtheria					5					
Dysentery. Hookworm					31					
Hookworm.					31	--		-......-	73	-------
Measles.	3				7		8		21	
Meningitis...	3					2			3	3
Mumps.							7		9	
Pneumonia ${ }^{\text {T }}$				4		17		5 4		24 26
Whooping coug	1		4		1	17	1	4	7	1

${ }^{1}$ Only deaths reported.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER

The reports contained in the following tables must not be considered as complete or final as regards either the lists of countries included or the figures for the particular countries for which reports are given.

Reports Received During Week Ended June 25, $1926{ }^{1}$
cholera

Place	Date	Cases	Deaths	Remarks
India.				A pr. 18-24, 1926: Cases, 3,514;
Madras	May 9-15	2	1	deaths, 2,198.
Rangoon	A pr. 18-May	94	48	

[^11]
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received During Week Ended June 25, 1926-Continued plague

Place	Date	Cases	Deaths	Remarks
Egypt..				May 7-13, 1926: Cases, 11; total
				Jan. 1-May 13, 1926-32; total for corresponding period 1925-
City-				cases, 40.
	May 16	1	1	Bubonic.
Province-Beni-Suef	May 16-20	5	4	Bubonic and septicemic.
India Minia.	May 17....	1		Bubonic.
India-..-	A pr. 25-M		2	A pr. 18-24, 1926: Cases, 11,032; deaths, 9,068.
Karachi.	May 9-15	1		
Madras	Apr. 18-24.	37	22	
Punjab District.	Apr. 2-8	7,336	5,379	Epiciemic, May 8, 1926.
Siam: ${ }_{\text {Bangk }}$	A pr. 18-May		25	
	A pr. 25-May	1	3	

SMALLPOX

Algeria: Algiers \qquad	May 11-20........-	6		
British East Africa: Kenya-				
Con Tanganyika....	Apr. 11-17....-.-.	2		
ada: British Columbia-				
Vancouver...-	May 24-30....	1		
Ontario	May 9-29....	25		
Chin Hamilton.	June 6-12.	1		
na: Manchurin-	May 2-8...........			
An-shan.	---.do..	3		South Manchuria Ry. line.
Fushun.	-...-do.	6		
Kai-yuan	do	1		Do.
Kungchuling	-do	1		Do.
Liao-yang	.-do	1		Do.
Mukden.	do.	5		Do.
Penhsihu.	do	2		Do.
Egypt: Alexandria	Apr. 30-May 13.--			
Cairo	Jan. 8-14........	5	1	
Great Britain:				
England and Waies.	May 16-22........-	162		
Leeds New'castle-upon-	May $24-29 .-$-....--	1		
India				Apr. 18-24, 1926: Cases, 7,330;
Bombay	Apr. 25-May 1...-	34	19	deaths, 1,700.
Karachi	May 9-15...-....-	17	7	
Madras..-	Apr. ${ }^{\text {do }}$ - ${ }^{\text {- }}$ May $8 . .$.	4 4	1	
Mexico: ${ }^{\text {Rangoon.- }}$				
Guadalajara	June 1-7		1	
San Luis Potosi.	May 30-June 5...-		2	
Persia: Teheran.	Feb. 28-Mar. 21.		6	
Portugal: Lisbon	May 16-29	17		
Spain:				
Valencia-	May 23-29........-	6	3	
Union of south Airica: Orange Free State.	Apr. 25-May 1.---			Outbreaks.

TYPHUS FEVER

Egypt:				
Alexandria	Apr. 30-May 6...-	1	----...--	
Esthonia				March, 1926: Cases, 5. Apri
nion of South Africa:				1926: Cases, 4.
Cape Province....	Apr. 30-May 1....			Outbreaks, in four districts, in 10 localities.

CHOLERA, PLAGUE, SMALLPOX, TYPEUS FEVER, AND YELLOW FEVER-Continued

Reports Received During Week Eaded June 25, 1926-Continued yELLOW PEVER

Place	Date	Cases	Deaths	Remarks
Brazil.				Mar.-May 17, 1926: 30 cases, several deaths in Parahyba; a smaller number in Natal. Reported checked May 17, 1926.

Reports Received from December 26, 1925, to June 25, $1926{ }^{1}$ CHOLERA

[^12]
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued PLAGUE

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued
Plague-Continued

Place	Date	Cases	Deaths	Remarks
Indo-China		$\begin{array}{r} 13 \\ 15 \\ 1 \end{array}$		September-December, 1925: Cases, 28; deaths, 26.
Province- Cambodia	Sept. 1-Nov. 30.-			
Cochin China.	Sept. 1-Dec. 31...		13	
Saigon...-	Apr. 5-11...-...-			
Iraq: Bagdad	Dec. 13-Jan. 2	7	3	
Do.	Jan.10-Apr. 17.---	111	61	
Batavia	Oct. 24-Nov. 6.	94	89	Province.
Do.-	Nov. 14-Jan. 1-..-	315	297	
Do.	Jan. 2-Mar. 12-	483	468	
Do	Mar. 19-Apr. 23.	61	${ }_{60}^{60}$	
Cheribon	Sept. 27-Oct. 17-..		166	
Do.	Jan. 3-Mar. 6.....		191	
Djokjakarta	Oct. 20-Nov. 9.-			Epidemic in 1 locality. Do.
Kediri	Dec. 7-7-Jan. 16			
Koeninigan	Feb. 7-Mar. 6...--		1103	
Pekalongan	Sept. 27-Oct. $17--$		4225290	
Do--	Nov. 8-Dec. 26....			
Probolinggo	Feb. 12-Mar. 6			Epidemic. Port.Do.
Rembang.	Oct. 20			
Surabaya	Oct. 11-Dec. $28 . \ldots$	59466	$\begin{array}{r} 59 \\ 46 \\ 69 \\ 31 \\ 11 \end{array}$	
	Dec. 27-Apr. 10---			
Tegal.	Sept. 2i-Oct. 17-..			
Do.	Feb. 21-Mar. 6-..-			
Madagascar				Nov. 1-Dec. 31, 1925: Cases, 632; deaths, 593. Jan. 1-31, 1926: Cases, 611; deaths, 565 . Mar. 1-31, 1926: Cases, 186; deaths, 179.
Province-		420342929294956	$\begin{array}{r} 7 \\ 2 \\ 3 \\ 4 \\ 20 \\ 34 \\ 29 \\ 29 \\ 48 \\ 52 \end{array}$	
Amhositra	Dec. 16-31.........			
Do..---	Jan. 1-15-..........			
Fort Dauphin	Sept. 16-30_.......			
Itasy...	Sept. 16-Oct.30---			
Do.-	Nov. 16-Dec. 31.-.			
	Jan. 1-15---			
Moramanga	Feb. 1-15-.....-.-.			
Moramanga	Jan. 1-Mar. 31			
Tananarive				Sept. 16-Nov. 30, 1925: Cases, 368; deaths, 341. Dec. 1G-31, 1925; Cases, 152; deaths, 143. Jan. 1-Mar. 31, 1923: Cases, 653; deaths, 554 .
Town-				
Do.-....	Feb. 1-Mar. 15..--			
Tananarive	Sept. 16-30-.....--	2	2	
Do.	Nov. 1-30---.-...-			
Do-	Jan. 1-Mar. 31-.--	38	37	
Mauritius Island	Sept. 20-Dec. 26...	21	18	
Moca-.......	Dec. 1-31-......-	2 3	2	
Port Louis....	Oct. 1-Dec. 31-...-	13		
Rivière du Rempart	October-.-	2		
Morocco: Tangier	May 9-15.			
Nigeria.-.	Aug. 1-Dec. 31...-	1 594 24	447	
Do..	Jan. 1-31-...-...---	24	21	
Persia: Teheran	Oct. 21-Nov. 21			
Peru..			12	January-March, 1926: Cases, 383; deaths, 148.
Barranca and Supo	Mar. ${ }^{1-31}$	4	6	
Caras.-.				
Cascas.	do	15	54	Present.
Chiclayo				
Chimbote	do	17.	8	Country estates.
Chincha	-do-----..----			
Contumaz		12		Present. Port 60 miles north of Callao.
Huacho	Jan. 26	$\begin{aligned} & 15 \\ & 6 \\ & 20 \end{aligned}$	---....-	
Lacranmarca	Mar. 1-31-...-----			In hospital. Some cases in Province. 12 or 15 cases reported uncmcially.
Lima.--	Jan. 1-31-........--			
Mollendo.	ar. ${ }^{\text {do- }}$			

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued PLAGUE-Continued

Place	Date	Cases	Deaths	Remarks
Peru-Continued Moro	Mar. 1-31.			Present.
Otuzco-----	---do.-.	1		Present.
Pacasmayo	do.	2		
Salaverry.-	do	5	2	
San Pablo.	do			Do.
Trujillo.	-do	15	5	
Russia.....	May-June	67		
Do	July 1-Dec. 31...-	256		
Senegal	September - October.	45	25	
Siam.	Aug. 23-Dec. $26 .$.	65	53	
Do.	Dec. 27-Jan. 30...-	16	9	
Bangkok	Nov. 15-28........-	3	3	
Do..	Jan. 3-30.....	38	33	
Do.	Feb. 7-20...	11	5	
Do	Feb. 28-May 1...-	8	5	
Straits Settlements:				
Singapore	Nov. 1-Dec. 5-...-	8	8	
Do.----......	Jan. 3-Mar. 20....	3	3	
Beirut	Nov. 11-20.	1		
D0.	Jan. 21-31.........	1		
Union of South Africa				Mar. 7-13, 1926: Cases, 3; Euro-
Cape Province -----	Apr. 4-10.-.------		1	pean, 2. Mar. 21-27, 1926: Cases, 12; deaths, 4. Apr. 4-17,
Cradock district.-	Apr. 11-24......--	3	3	1926: Cases, 7; deaths, 4.
Kimberley district	Dec. 13-19.-.-.---	1		Native.
Middleburg district	Dec. 6-12..........-	1		European.
Steynsburg district	Nov. 15-21........-	1		Native. On farm.
Winburg district.-	Feb. 21-27.-.---.-	1		
Orange Free State...-				Mar. 14-Apr. 10, 1926: Cases, 11; deaths, 5 .
Boshof district.	Nov. 29-Dec. 5...-	1	1	In native.
Bothaville district	Dec. 6-12..........	1	1	Native. On farm.
Bradfort district	Mar. 28-Apr. 3...-	1	1	
Grandfort district.	Mar. 21-27....-. --	3	1	European, in same family, pneumonic.
Hoopstad district	Mar. $\mathbf{7}^{\text {-Apr. 17...- }}$	10	5	
Kroonstad district.	Mar. 14-20.-.-..--	1		Native. On farm.
Winburg district.--	Mar. 14-Apr. 3.-.-	11	5	
Steamship Cid.-......				Jan. 29, 1926. Plague rat. At Buenaventura, Colombia. Rat was killed while jumping ashore from vessel.

SMALLPOX

Algeria:				
Algiers.	Nov. 21-Dec. 31.--	177		
Do-	Jan. 1-10	64		
Arabia: ${ }^{\text {Do. }}$	Jan. 21-May 20---	87		
Arabia.	Nov. 29-Dec. 5...-	1		Imported.
Do.	Jan. 10-May 15-.-	11	1	
Argentina: Rosario.	October.		- 1	
Australia: Queensland-				
Brisbane..	Dec. 9-15..........-	1		
Azores: Fayal Island	Feb. 2-Apr. 26...-			Present. Reported as alastrim.
Horta...	Apr. 20......--...-			Present.
Bahamas..	Feb. 23.			In Nassau district. Stated to have been imported.
Brazil:				
Manaos.			12	
Para ${ }^{\text {Do. }}$	Jan. 1-Mar. 31----		145	
Para	Jan. 10-May 15...-	38	13	
Rio de Janeiro	Nov. 1-28-..------	134	72	
Do.	Dec. 6-26-....-.---	65 279	226	June 27, 1925-Mar. 20, 1926:
-	-	27	224	Cases, 1,089; deaths, 580.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELEOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued
SMALLPOX-Continued

Place	Date	Cases	Deaths	Remarks
British East Africa: Kenya-				
			6	
Tanganyika territory	Apr. 11-17........-	2		
Dares-Salaam	Peb. 21-27-.........	1		
Uganda Protectorate	Sept. 1-Oct. $31 . .$.	8	4	
British South Africa--				
British South Africa: Northern Rhodesia	Jan. 5-11_........-	2		
Southern Rhodesia.	Nov. 13-Dec. 23..-			
				$\begin{aligned} & \text { ept. 10,Jan. case. Jan. } 3 \text {-May 29, 1926: } \\ & \text { Cases, } 542 \text {. } \end{aligned}$
Alberta-...-				Jan. 3-May 1, 1926: Cases, 70.
Calgary	Dec. 13-19------.-	1		From Drumheller, vicinity of
British Columbia- Vancouver.	Jan. 4-May 30	3		Calgary.
Victoria...	Mar. 21-27	2		
Manitoba-.--				Jan. 3-May 8, 1926: Cases, 78.
Winnipeg	Dec. 13-19.-......	2		
Now Druswick-...	Jan. 3-Apr. 10..---	16	1	
New Brunswick-	Dec. 6-13.	1		
Ontario				Dec. 1-31, 1925: Cases, 32. Jan.
Admaston.	Jan. 1-Feb. 1	16		Township.
Alice and Fraser.	Feb. 1-28...-	6		Do.
King--	do	7		Do.
Wilmot	do	6		Do.
Belleville	do	4		
Kingston.	Mar 8-M8y 15			
Kitchener.	-..do..........--	26		
North Bay	Feb. 14-Mar. 14...	7		
Ottawa	Dec. 6-12	2		
po.	Jan. 3-May 29.	3		
Sarnia.-.	Mar. 14-May 8...-	9		
Toronto	Dec. 27-Jan. $2-$	1		
Trenton...	Jan. 3-May 15	31		
Saskatchewan	Jan. 3-Apr. 17-...-	15		
Moose Jaw	Jan. 3-Mar. 20	2		Jan. 3-May 8, 1926: Cases, 131.
Regina.	Jan. 24-May 1...	5		
Saskatoon	Feb. 14-20........	1		
Ceylon: Colombo	Dec. f-12	1		Port case.
Do...	Jan. 3-Feb. 6...--	5		
Punta Arenas	Dec. 13-26.		8	
Do.......-	Dec. 27-Jan. $2 . .$.		4	
China:				
Amoy ${ }_{\text {Do. }}$	Oct. 25-Dec. 19--			
Antung.--	Jan. 10-Apr. 17.		35	
Antung-	Mar. 21-May 16...	9		
Changsha.	Feb. 21-27.........			Present.
Chungking	Nov. 15-17.			Do.
Do...	Feb. 28-Apr. 3 .			D.
Foochow.-	Nov. 1-May 1....			Do.
Hankow...	Nov. 14-Dec. 26..-	4		
Hongkong.-.	Jan. 10-Mar. 6-..- Nov. $22-$ Dec.	4		
Hongkong	Jan. 3 -A pr. 24.....	19	9	
Manchuria-				
${ }_{\text {An-shan-- }}^{\text {Do. }}$	Dec. 6-12	15		
Changchun	--do--...-	51	1	Do.
Dairen..	Oct. 19-Dec. 27...-	73	15	Do.
Fushun.	Dec. 28-Apr. 11---	90	28	Do.
Harbin.	Jan. 1-May 6....-.	38		Do.
Kai-yuan	Jan. 10-May 8.-..-	8		Do.
Kungchuling.	Jan. 31-May 8....-	4		Do.
Mukden.	Oct. 24-Nov. 15...	1		Do.
Do..	Jan. 24-May 8.....	9	-....-.--	Do.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued
SMALLPOX-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926-Continued
SMALLPOX-Continued

Place	Date	Cases	Deaths	Remarks
Indo-China				September-December, 1925:
Province-				
Annam.	Sept. 1--do.--...-...-	- 232	34	
Cochin Chi		108	51	
Saigon.	Dec. 21-27 Jan. 1-Mar. 28	12	1	Including 100 square kilometers
Tonkin..	Sept. 1-Dec. 31-..-	153		of surrounding country.
Bagdad	Nov. 1-Dec. 26..	19		Sept. 6-Oct. 17, 1925: Cases, 81;
Do.	Dec. 27-May 1....	27	14	Deaths, 40.
Basra.	.-.-do........	70		
Catania	Feb. $15-28$		1	Aug. 2, 1925-Jan. 2, 1926: Cases,
Do.	Apr. 27-May 2....	4		38. ${ }^{\text {an. }}$-Mar. 27, 1820. Cas
Genoa.	Jan. 21-Feb. 10....	4		
Rome	Oct. 12-25--------	1		
Do.	Feb. 22-28...-.....	1		Occurring in consular district.
				Dec. 27, 1925-Apr. 24, 1926: Cases, 509. Reported as alastrim.
Kingston.	Nov. 29-Dec. 26	43		Reported as alastrim.
Do..	Dec. 27-Jan. 30-..	$\begin{aligned} & 48 \\ & 98 \end{aligned}$		Do.
Japan:				
Kobe---	Mar. 14-May 1....	4		
Taiwan.	Feb. $115-25 .-{ }^{\text {a }}$ - 10	3		
- Do..	Mar. 21-31.....	3		
Yokohama.	Dec. 14-20	1		
Java: Do.-	Feb. 23-Apr. 24.	73	12	
Batavia	Oct. 24-Dec. 25-	8		
Buitenzorg	Feb. 20-Mar. 19.--	6		
Cheribon.-	Nov. 8-Dec. $12 . .$.	2		
Do........	Jan. 31-Feb. 6-...		1	
East Java and				
Malang	Oct. 11-Dec. 26.	2		
Do	Dec. 27-Jan. 16...-	3	2	
North Bantam	Oct. 4-17-....	4		
Pexalongan	Oct. 25-31.-.	1		
Probolinggo	Oct. 11-17--..-	1	1	
Serang.	Feb. 14-27.	5		
South Bantam	Feb. 23-Mar. 27..-	1		
Surabaya	Oct. 11-Dec. 26---	633	104	
$\begin{aligned} & \text { Tegal } \end{aligned}$	Dec. 27-Mar. 13... Oct. 4-10	141 9	43 1	
Latvia...				December, 1925: Cases, 3.
Malta	Nov. 1-Dec. 21....	21	3	
Do-	Jan. 1-Feb. 28...--	20		
Fort de France	May 10-May 1-....	6		Prevalent. Alastrim.
Mexico...				July-September, 1925: Deaths,
Aguascalientes.	Dec. 13-Jan. 2	4	3	1,157.
Do.-.----	Jan. 3-30		78	
	Feb. 14-May $22 . .$.		18	
Chamargo	May $22-17$	2		
Ciudad Juarez	May 9-24-		2	
Durango	Dec. 1-31.		1	
Do-	Jan. 1-31.		2	
Guadalajara Mexico City.	Dec. 27-June 7.... Nov. 28-Dec. 5...	1	28	
				eral District.
Do	Jan. 3-May 22....-	34		
Saltillo----..-	Apr. 4-10.....---	1		
San Luis Potosi Do.	Jan. 17-Mar. 20..		53 44	
Tampico	Dec. 21-Jan. 2-...-		1	
Do...	Jan. 2-Mar. 10...-	8		
Torreon.	Nov. 1-Dec. 31...-			
Vera Cruz.	Mar. 29-Apr. $4 . .$.	5	1	

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926-Continued
SMAJLPOX-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
Reports Received from December 26, 1925, to June 25, 1926-Continued TYPHUS FEVER

CHOEERA, PLAGUE, SMALLPOX, TYPIUUS FEVER, AND YELLOW FEVER-Oiontinued

Reports Received from December 26, 1925, to June 25, 1926-Continued
TYPHUS FEVER-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Reports Received from December 26, 1925, to June 25, 1926—Continued
TYPHUS FEVER-Continued

Place	Date	Cases	Deaths	Remarks
Natal-Continued. Transvaal.	Oct. 1-31.	1	1	
Do.......................-	Dec. 1-31-......--	18 9	4	
Johannesburg district	Mar. 1-20.-...-.--	3	4	
Yugoslavia_......................-	Dec. 27-Jan. 2....-			Outbreak. On farm.
Yugoslavia.				Jan. 1-Mar. 21, 1926: Cases, 105; deaths, 18.
YELLOW FEVER				
Brazil.....-.....................				
				several deaths, in Parahyba; a smaller number in Natal.
Gold Coast.....................-	Sept. 1-Dec. 31...-		3	
	August-October...- November, 1925..-	3 3	2 2	
	November, 1925..-		2	

[^0]: ${ }^{*}$ Evans, Alice C.: Studies on Brucella (Alkaligenes) Melitensis: Hyg. Lab. Bun. 143, United States Public Health Service, 1925.

[^1]: ${ }^{1}$ Evans, Alice C.: Studies on Brucella (Alkaligenes) Melitensis: Hyg. Lab. Bull. 143, United States Public Health Service, 1925.

[^2]: ${ }^{1}$ Unheated, preserved by addition of an equal amount of pure neutral glycerin; tested Aug. 14, 1925.
 Unheated, prescrved with trikresol; tested July 6, 1925.

[^3]: ${ }^{1}$ From the Office of Statistical Investigations, U. S. Public Health Service.

[^4]: ${ }^{1}$ Ages of patients who were vaccinated in infancy varied from 18 to 75 years.
 2 Time from vaccination to onset of disease varied from 6 to 55 years. Ages of patients varied from 21 to 79 years.

[^5]: Annual rate per 1,000 population
 ${ }^{2}$ Deaths under 1 year per 1,000 births. Cities left blank are not in the registration area for births.
 ${ }_{3}^{2}$ Deaths under 1 Data for 63 cities.
 4 Deaths for week ended Friday June 11, 1926.
 ${ }^{6}$ In the cities for which deaths are shown' by color, the colored population in 1920 constituted the following percentages of the total population: Atlanta 31, Baltimore 15, Birmingham 39, Dallas 15, Fort Worth 14, Ffouston 25, Kansas City, Kans., 14, Lonisville 17, Memphis 38, Nashville 30, New Orleans 23, Norfolk 38, Richmond 32, and Washington, D. O., 25.

[^6]: ${ }^{1}$ No estimate made.

[^7]: 1 No estimate made.

[^8]: ${ }^{1}$ Pulinonary taberculasis only.

[^9]: ${ }^{1}$ Typhus fever, 2 eases at Baltimore, Md.

[^10]: ${ }^{1}$ The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimated as of July 1, 1925 and 1926, respectively.
 ${ }^{2}$ Spokane, Wash., not included.
 ${ }^{3}$ Grand Forks, N. Dak., not included.
 ${ }^{4}$ Superior, Wis., and Tacoma, Wash., not included.
 ${ }^{5}$ Clarleston, $\mathrm{W} . \mathrm{V}_{\mathrm{C}}$. , not included.
 ${ }^{6}$ Wilmington, N . C., not included.
 ${ }^{7}$ Concord, N. H., Madison, Wis., Grand Forks, N. Dak., Norfolk, Va., Wilmington, N. C., and Covington, Ky., not included.
 ${ }^{8}$ Concord, N. H., not included.

 - Superior, Wis., not included.
 ${ }^{10}$ Madison, Wis., not included.
 ${ }_{11}$ Norfolk, Va., and Wilmington, N. C., not included
 ${ }_{13}$ Covington, Ky., not included.
 ${ }^{13}$ Tacoma, Wash., not included.

[^11]: ${ }^{1}$ From medical officers of the Publie Health Service, A merican consuls, and other sources.

[^12]: ${ }^{1}$ From medical officers of the Public Health Service, American consuls, and otber sources.

